Prepare (e)STAR as an EIC detector

Zhangbu Xu (BNL)

 Introduction (eSTAR) Physics Cases ●STAR (status) → eSTAR •R&D Projects •FCS/BSO/iTPC/TRD On-going simulations Summary

a passion for discovery

RHIC: eight key unanswered questions

Hot QCD Matter

- 1: Properties of the sQGP
- 2: Mechanism of energy loss: weak or strong coupling?
- 3: Is there a critical point, and if so, where?
- 4: Novel symmetry properties
- 5: Exotic particles

Partonic structure

6: Spin structure of the nucleon7: How to go beyond leading twist and collinear factorization?

8: What are the properties of cold nuclear matter?

A Long Term (Evolving) Strategic View for RHIC

*

Golden Probes in eA

Physics eSTAR	Measurements	requirements	
Structure functions of heavy nuclei (F2,FL)	Scattered electron (Q ² ,x)	Precise electron p and PID	
Semi-inclusive final- state correlation	Scattered electron (Q^2,x) and hadrons	Electron ID and hadron spectra	
Exclusive Vector Meson	J/Ψ and other vector meson	Electron/muon ID and full coverage detector	
Cold Nuclear Energy Loss	Jets and leading hadrons	Electron and Hadron PID	
Heavy-Flavor Energy Loss	Charm PID	Secondly vertex detector	
Exotics	Heavy-flavor hypernuclei	Forward Secondly vertex detector	

Imaging nuclei

STAR

Figure 3.20: $d\sigma/dt$ distributions for exclusive J/ψ (left) and ϕ (right) production in coherent and incoherent events in diffractive eAu collisions. Predictions from saturation and non-saturation models are shown.

Colored dipole directly images gluon distribution

Proof of Principle of exclusive Diffractive

Winter Workshop Nuclear Dynamics 7-14 April 2012

O

0.04

0.02

0.06

0.08

0.12

0.14

0.1

0.18

-t [(GeV/c)²)]

0.16

Proven STAR Capabilities

STAR Deliverables with polarized e+p collider

Science Deliverable	Basic Measurement	Uniqueness Feasibility Relevance	M. Stratmann: eRHIC workshop Requirements
spin structure at small $_X$ contribution of Δg , $\Delta \Sigma$ to spin sum rule	inclusive DIS	eSTAR	minimal large x,Q ² coverage about 10fb ⁻¹
full flavor separation in large x,Q ² range strangeness, s(x)-s(x) polarized sea	semi-inclusive DIS	eSTAR	very similar to DIS excellent particle ID improved FFs (Belle,LHC,)
spatial structure down to small x through TMDs and GPDs	SIDIS azim. asym. & exclusive processes	estar some results in valence region	p _T ^H binning, t resolution, exclusivity, Roman pots, large (x,Q ²) range

STAR Cross Sections in pp compared to pQCD

STAR RHIC: the only polarized proton collider!

Current STAR Experiment

Large Coverage

Low Material

Extend this concept to hadron direction

- GEM tracker (VFGT)
- Hadron PID?
- Forward Calorimetry
- Extend this concept to electron direction
 - Reinstrument inner TPC
- Electron and hadron ID with gas detector and TOF, EMC
- TRD+TOF

DIS – eSTAR Kinematics

13

STAR forward instrumentation upgrade

eSTAR specific upgrades:

STAR

EToF: e, *π*, *K* identification, ETRD: electron ID and hadron tracking BSO: 5 GeV, 10 GeV, ... electron beams Re-instrument HFT

- Forward instrumentation optimized for p+A and transverse spin physics
 - Charged-particle tracking
 - e/h and γ/π^0 discrimination
 - Baryon/meson separation

STAR Science for the Decade – QM2011 – Carl Gagliardi

QED α =1/137 and low multiplicity \rightarrow an order of magnitude lower pile-up than RHIC

Beam species	Sqrt(s)	Peak Luminosity (cm ⁻² s ⁻¹)	Cross section (cm ²)	Nch/dղ	Track density (dNch/dη MHz)	Hit density impact hit finding	Space charge impact tracking
e+p	5x250	10 ³⁴	10 ⁻²⁸	0.7	0.7		
Au+Au	100x100	5x10 ²⁷	7x10 ⁻²⁴	161	6	Minor	Corrected to good precision
p+p	100x100	5x10 ³¹	3x10 ⁻²⁶	2	3	Minor	Corrected to good precision
p+p	250x250	1.5x10 ³²	4x10 ⁻²⁶	3	18	Significant for inner	Corrected to acceptable

Star Spaghetti Tungsten powder with fibers

Approved EIC R&D project from May 2011, UCLA, TAMU, PSU

R&D proposals: http://drupal.star.bnl.gov/STAR/future/estar-task-force

STAR Calorimeter Test Beam and Simulations

T1018 Jan.30, 2012 Very successful Run

Got "proof-of-principle"

L. Dunkelberger, H.Z. Huang, G. Igo, K. Landry, Y.Pan, S.Trentalange, O.Tsai, W. Xu Q.Zhang (UCLA) C. Gagliarddi (Texas A&M) C.Dilks, S.Heppelman (Penn State)

SPACAL resolutions, averaged over 4 Channels, $\sigma_{E} / E = (a/\sqrt{E})+b$

DOE

Crystal Calorimeter (BSO)

Crystal	Density (g cm ⁻³)	Rad. length (mm)	Decay time (ns)	Peak emission (nm)	Relative light output	Price (\$/ cc)
BSO	6.80	11.5	~ 100	480	0.04	13-18
BGO	7.13	11.2	~ 300	480	0.10-0.21	> 40
PWO	8.28	8.9	~ 10-30	410 - 450	0.003	10-13

•Very Forward Electron Detection (eta<-2.5)

•BSO is produced by replacing Ge in BGO with Si, the material cost for BSO reduced by x3-4.

- Collaborators: USTC,SINAP,THU
 Vendor: Shanghai SICCAS High
 Technology Coorporation
 R&D proposal partially funded by BNL/
 - B 2204 T

First Stage eRHIC electron/hadron PID

STAR

Figure 3.5: Electron efficiency vs. hadron contamination fraction by varying the dE/dx cut to selection electrons for 4 p_T bins.

STAR

Figure 3.5: Electron efficiency vs. hadron contamination fraction by varying the dE/dx cut to selection electrons for 4 p_T bins.

STAR Current Inner Sector Limitations

- Staggered readout
 - Only 13 maximum possible points
 - Issues in Tracking: recognition and resolution
 - Only reads ~20% of possible gas path length
 - Inner sectors essentially not used in dE/dx
- Essentially limits TPC effective acceptance to $|\eta| < 1$

Inner TPC Upgrade

StarSector Replacement is possible but not Trivial

Jim Thomas (LBL)

Physics and Instrumentation R&D

- Optimize number of rows to match available funds & Eng. factors
- Optimize pad size for greatest physics return
- Join existing R&D efforts for PASA and Altro chips

Technical Challenges (R&D by another name)

- Pad plane design traces & connector technology, alignment
- Winding large wire planes ... an art rather than a science
- **•** Factory assembly line, QA and efficiency

TRD+TOF at Endcap (-2<η<-1)

R&D on **GEM** based **TRD**

Proposal funded by EIC R&D committee

R&D proposals: http://drupal.star.bnl.gov/STAR/future/estar-task-force

STAR Prototype TGEM Products at IHEP/China

- 1. Ionization chamber: 6mm
- 2. Energy Resolution: 16% for 55 Fe @ Gain = 3700 Ar/iC₄H₁₀(97/3%)
 - 3. Spatial resolution: 0.25mm

核探测与核电子学国家重点实验室

State Key Laboratory of Particle Detection and Electronics

Test performed at Yale

Simulation Geometry

SŢAR

A Pythia Simulation Event

> Only TPC and ETTIE are shown

STAR Acceptance and Resolution (first simulation)

Haven't optimized vertex finder (some events without vertex constraint)

STAR Physics Simulations in Progress

5x250 ep collisions:

- 1. g_1 vs (x,Q²), generator PEPSI
- 2. Semi-inclusive with PID: ΔG vs (x, Q²)

eA (electron+Pb):

- **1.** F_2 , F_L 5x50, 5x75, 5x100 (DJANGOH)
- 2. dφ of di-hadron for given (x, Q²) relative to virtual photon direction (as z): PYTHIA
- 3. Semi-inclusive R(eA/ep) (v, Q², z, p_t) PID (PYTHIA6.x)
- 4. J/Ψ exclusive (SARTRE)

For event generators, see EIC-TF webpage: https://wiki.bnl.gov/eic/index.php/Simulations#Event_Generators

Plans

Continue to sharpen the physics cases
Receible R&D projects:

- Possible R&D projects:
 - 1. Tracking and PID (hadron side)
 - 2. Calorimetry (hadron side)
 - 3. Tracking+eID (electron side)
 - 4. End-Cap TOF (electron side)
 - 5. Very forward electron ID
 - 6. Roman Pots (not really R&D, but necessary)
- Simulation of feasibilities
- Update Decadal Plan
- Discuss with CAD and EIC TF on IR design and detector R&D

Summary

- eSTAR a possible option for first-stage EIC detector
- Near-term upgrades for RHIC have optimized for eSTAR option as well
- R&D projects and EIC simulation in progress
- STAR Collaboration is committed to the eSTAR path
- Inputs/helps from groups (theorists and experimental colleagues)

Semi-inclusive final state correlation

Additional dE/dx and tracklet

dE/dx and TR signals for electron and hadron discrimination High-position tracklet for hadron momentum reconstruction