"I think that I shall never see A collision as lovely as \vec{e} on \vec{p} "

The pp Spin Program at RHIC

- Status of ΔG measurements
- \succ W/Z* production and A_L
- Transversity at mid-rapidity

The RHIC rings: A Decade of Developing a Resource

RHIC Performance in Run 12...

✓ ~5 weeks each of pp200 and pp500
✓ 2 *new* heavy-ion species (U+U and Cu+Au)

... and the collaborations are grateful!

Bottom line: For all four species / beam energies, all established run goals were exceeded, often by factors greater than two. Stochastic cooling works!

The Spin Puzzle: Understanding nucleon substructure

The RHIC spin program:

Study hard partonic scattering processes in polarized *pp* collisions, using polarization of one parton to probe helicity preferences of the other

→ Provides a "snapshot" of spin distributions:

$$\langle \mathbf{S}_{z}^{p} \rangle = \frac{1}{2} = \frac{1}{2} \Delta \Sigma + \Delta \mathbf{G} + \langle \mathbf{L}_{z}^{quarks} \rangle + \langle \mathbf{L}_{z}^{gluons} \rangle$$

quark helicity gluon helicity

→pDIS studies consistently show quark helicity contributions ~30%!

- 1. Can gluonic spin and partonic orbital angular momentum account for the remaining 70%?
- 2. Can we unravel the individual terms that contribute to $\Delta\Sigma$?

Hirai, Kumano, Saito

6

20 August 2012

POETIC 2012

Results from 2009: gluon polarization may be non-zero

Correlation studies: more evidence from di-jets

From crude interpolation: 2009 pp200 jet data suggest that perhaps ~ 25% of the proton's spin may be carried by gluons!

Much more precise data – most at 500 GeV – to come

Flavor Asymmetry of the Sea: the RHIC W program

Unpolarized Flavor asymmetry

- Naïve expectation: a "free" gluon splits to u and d pairs equally often
- Quantitative calculation of Pauli blocking does not explain d/u ratio
- E866 results are qualitatively consistent with pion cloud models, chiral quark soliton models, instanton models, etc.

- "Hints" from recent COMPASS data
- Extracting polarized flavor asymmetry could help differentiate among models

 $x(\Delta \overline{u} - \Delta \overline{d})$

Probing the Sea Through W Production at RHIC

$$u + \overline{d} \to W^+ \to e^+ + \nu$$

$$\overline{u} + d \to W^- \to e^- + \overline{\nu}$$

$$\sqrt{x_1 x_2} = 0.16$$

- V-A coupling \rightarrow left-handed W's couple I.h. q with r.h. $q \rightarrow perfect spin separation$
- Detect W's through e⁺/e⁻ decay channels
- Typically find $x_q > x_q \rightarrow W$ highly boosted
- In W⁺⁽⁻⁾ rest frame, lepton is preferentially emitted along (against) W spin direction

Measure parity-violating single-spin asymmetry: $A_L = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$ (Helicity flip in one beam while averaging over the other)

$$A_L^{W^-} \propto -\Delta d(x_1)\overline{u}(x_2) + \Delta \overline{u}(x_1)d(x_2)$$

 $A_L^{W^+} \propto -\Delta u(x_1)\overline{d}(x_2) + \Delta \overline{d}(x_1)u(x_2)$

Finding W's at RHIC: a very clean signature!

20 August 2012

Finding W's at RHIC: Detectors are up to the task!

A (possible) real W!

Finding W's at RHIC: Detectors are up to the task!

Identify isolated electron candidates

- Require a track with $p_T > 10$ GeV/c to point to a 2 x 2 patch with $E_T > 15$ GeV
- Require > 95% of energy in 4 x 4 patch to lie inside the central 2 x 2 patch (*E_T^e*)
- Throw out event if the surrounding cone (R = 0.7) has >10% of candidate energy E_T
- Throw out event if too much energy is on opposite side (180° away in φ) → reconstruct jets, check p_T balance

RHI

Identify isolated electron candidates

- Require a track with $p_T > 10$ GeV/c to point to a 2 x 2 patch with $E_T > 15$ GeV
- Require > 95% of energy in 4 x 4 patch to lie inside the central 2 x 2 patch (E_T^e)
- Throw out event if the surrounding cone (R = 0.7) has >10% of candidate energy E_T
- Throw out event if too much energy is on opposite side (180° away in φ) → reconstruct jets, check p_T balance

Ensure that lepton charge separation is robust

STAR W's from Run 9 – corrected yields

Scott Wissink, CEEM@IU

20 August 2012

Final W yields used for cross sections and A_L

STAR: |η^e|<1 PHENIX: |η^e|<0.35 Counts per 2 GeV bin 60 STAR $p + p \rightarrow W^- + X \rightarrow e^- + X$ 70₽ Positron candidates 60 Software threshold Electron $|\eta_e| < 1$ All 50 Candidates After Isolation Cut Counts 40 Backg. est. 30 W signal 10 20 100 $+p \rightarrow W^+ + X \rightarrow e^+ + X$ Counts per 2 GeV bin 0 00 70 Electron candidates 60 Estimated BG 50 Positron $|\eta_e| < 1$ Counts Estimated BG after Isolation Cut 40 30 10 2010 0 ⁶⁰ p_T (GeV/c)⁰ 30 20 40 50 20 70 10 30 40 50 60 E_T^{ℓ} (GeV)

World data set for W production in pp and pp colliders

RHIC

POETIC 2012

Initial look at some η dependencies

Lepton η distributions in reasonable agreement with MC \rightarrow weaker lepton "boost" for W⁺ results in tightly clustering at $\eta = 0$

Ratio of W⁺ / W⁻ eliminates dominant systematic error of absolute luminosity → in excellent agreement with NLO calc's w/ different PDF's

20 August 2012

POETIC 2012

Initial AL results: 2009 (first 500 GeV run!)

22

First look at STAR results from Run 12: $P^2L \approx 25 \text{ pb}^{-1}$

New forward detectors: PHENIX

Muon Piston Calorimeter (MPC): PbWO₄ **3.1** < $|\eta|$ < **3.9** 2π azimuth Gives access to lower $x \rightarrow 10^{-3}$ Fully available from 2008

Forward Tracking into the Endcap: FGT Upgrade

FGT: 6 light-weight triple-GEM disks using industrially produced GEM foils (Tech-Etch Inc.) **14 (out of 24) quadrants installed for Run 12**

Scott Wissink, CEEM@IU

20 August 2012

Expected W asymmetries at PHENIX and STAR

> Confirm (or not) quark polarizations in valence region, $\dot{x} = 0.1-0.3$

Provide new constraints on antiquark helicities (no FF, high Q²)

Moving towards transversity: Mid-rapidity Collins effect

- Sensitive to convolution of transversity and Collins fragmentation function
- Expect improved uncertainties with new runs and larger simulations to reduce syst.

27

New tool: Interference Fragmentation Function

$$\frac{\sigma^{\uparrow} - \sigma^{\downarrow}}{\sigma^{\uparrow} + \sigma^{\downarrow}} (\phi_{S} - \phi_{R}) = A_{UT} \sin(\phi_{S} - \phi_{R}) \qquad A_{UT} \propto h_{1} \cdot H_{1}^{<}$$

 ϕ_s : Angle between polarization vector and event plane

Scott Wissink, CEEM@IU

20 August 2012

IFF at STAR: First results

Combining these data with the IFF measurements carried out at Belle, one can extract – for the first time – quark transversity, point by point.

Greatly increased statistics already exists on tape!

Outlook: the Spin Physics Program at RHIC

- First tantalizing hints of non-zero gluonic contributions to the spin of the proton – perhaps as large as the contributions from quarks
- Initial studies of W/Z* production very encouraging, limited statistics → quantities studied to date are consistent with NLO calculations
- Solution Over next 2-3 years: should achieve high precision on ΔG , begin to map out *x* dependence; study PV singlespin asymmetries A_L over broad η
- Very exciting glimpse of transversity!

→ Must view these studies as <u>key components</u> of broader program to understand <u>all aspects</u> of parton spin behavior in the nucleon!

