Babar anomaly and the pion form factors
 Adam Szczepaniak Indiana University

- Form-factors :: quark/gluon structure of hadrons

Babar anomaly and the pion form factors

Adam Szczepaniak Indiana University

- Form-factors :: quark/gluon structure of hadrons
- high Q^{2} :: LO pQCD (twist/ α_{s} expansion)

Babar anomaly and the pion form factors

Adam Szczepaniak Indiana University

- Form-factors :: quark/gluon structure of hadrons
- high $\mathrm{Q}^{2}::$ LO pQCD (twist/ α_{s} expansion)
- Questions:

with M.Gorshtein, P.Guo, J.L.Londergan,

F.L.Estrada

BaBar anomaly $e^{+} e^{-} \rightarrow \pi^{0} e^{+} e^{-}$
B.Aubert et al. Phys.Rev. (2009)

theory: G.P.Lepage, S.Brodsky

BaBar anomaly $e^{+} e^{-} \rightarrow \pi^{0} e^{+} e^{-}$
B.Aubert et al. Phys.Rev. (2009)

theory: G.P.Lepage, S.Brodsky

problems with LO PQCD in exclusive reactions

N.Isgur, C.H.Llewellyn Smith, Phys.Rev.Lett.(1983)

$$
\xrightarrow{P_{z} \rightarrow \infty} \underbrace{\substack{z_{i} P_{z}, \mu_{i, \perp} \sim O(1)}} \begin{aligned}
& \frac{1}{\Delta t} \sim \Delta E=\sum_{i} \frac{\mu_{i \perp}^{2}}{z_{i} P_{z}} \\
& \hdashline \begin{array}{c}
\Delta t
\end{array} \\
& \begin{array}{c}
\text { valid for zi } P_{z} \text { large i.e. NOT } \\
\text { in the end-point region }
\end{array}
\end{aligned}
$$

* Pion form factors : still a mystery

* Dispersive analysis

$$
F(s)=F(0)+\frac{s}{\pi} \int_{s_{t h}} d s^{\prime} \frac{\operatorname{Im} F\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}
$$

$$
F=F_{2 \pi}, F_{\gamma \pi}
$$

* Dispersive analysis

$$
\begin{aligned}
& F(s)=F(0)+\frac{s}{\pi} \int_{s_{t h}} d s^{\prime} \frac{\operatorname{Im} F\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} \\
F= & F_{2 \pi}, F_{\gamma \pi}
\end{aligned}
$$

EM F.Factor

$$
\begin{aligned}
\operatorname{Im} F_{2 \pi}(s) & =t_{2 \pi, 2 \pi}^{*} \rho_{2 \pi} F_{2 \pi}+t_{2 \pi, K \bar{K}}^{*} \rho_{2 K} F_{2 K}+\sum_{X} t_{2 \pi, X}^{*} \rho_{X} F_{X} \\
& =t^{*} \rho F_{2 \pi}+R
\end{aligned}
$$

$$
t(s)=\int d z_{s} t^{I=1}\left(s, t\left(z_{s}\right)\right) P_{1}\left(z_{s}\right) \quad \rho(s)=\left(1-s / s_{t h}\right)^{1 / 2}
$$

* Dispersive analysis

$$
\begin{aligned}
& F(s)=F(0)+\frac{s}{\pi} \int_{s_{t h}} d s^{\prime} \frac{\operatorname{Im} F\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)} \\
F= & F_{2 \pi}, F_{\gamma \pi}
\end{aligned}
$$

EM F.Factor

$$
\begin{aligned}
\operatorname{Im} F_{2 \pi}(s) & =t_{2 \pi, 2 \pi}^{*} \rho_{2 \pi} F_{2 \pi}+t_{2 \pi, K \bar{K}}^{*} \rho_{2 K} F_{2 K}+\sum_{X} t_{2 \pi, X}^{*} \rho_{X} F_{X} \\
& =t^{*} \rho F_{2 \pi}+R
\end{aligned}
$$

$$
t(s)=\int d z_{s} t^{I=1}\left(s, t\left(z_{s}\right)\right) P_{1}\left(z_{s}\right) \quad \rho(s)=\left(1-s / s_{t h}\right)^{1 / 2}
$$

$$
F_{2 \pi}(s)=1+\frac{1}{\pi} \int_{s_{t h}} d s^{\prime} \frac{t^{*}\left(s^{\prime}\right) \rho\left(s^{\prime}\right) F_{2 \pi}\left(s^{\prime}\right)+R\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}
$$

(so far) Exact representation of the electromagnetic form factor

* Dispersive analysis cont.
elastic
inelastic $\quad R\left(s^{\prime}\right) \propto \theta\left(s^{\prime}-\left(4 m_{\pi}\right)^{2}\right)$

$$
F_{2 \pi}(s)=1+\frac{1}{\pi} \int_{s_{t h}} d s^{\prime} \frac{t^{*}\left(s^{\prime}\right) \rho\left(s^{\prime}\right) F_{2 \pi}\left(s^{\prime}\right)+R\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}
$$

solution

* Dispersive analysis cont.
elastic
inelastic $\quad R\left(s^{\prime}\right) \propto \theta\left(s^{\prime}-\left(4 m_{\pi}\right)^{2}\right)$

$$
F_{2 \pi}(s)=1+\frac{1}{\pi} \int_{s_{t h}} d s^{\prime} \frac{t^{*}\left(s^{\prime}\right) \rho\left(s^{\prime}\right) F_{2 \pi}\left(s^{\prime}\right)+R\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}
$$

solution

$$
F_{2 \pi}(s)=\frac{N(s)}{D(s)} \quad \longleftarrow \quad \text { inelastic cut }
$$

* Dispersive analysis cont.
elastic
inelastic $\quad R\left(s^{\prime}\right) \propto \theta\left(s^{\prime}-\left(4 m_{\pi}\right)^{2}\right)$

$$
F_{2 \pi}(s)=1+\frac{1}{\pi} \int_{s_{t h}} d s^{\prime} \frac{t^{*}\left(s^{\prime}\right) \rho\left(s^{\prime}\right) F_{2 \pi}\left(s^{\prime}\right)+R\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}
$$

solution

$$
\begin{aligned}
& F_{2 \pi}(s)=\frac{N(s)}{D(s)} \stackrel{\text { inelastic cut }}{\longleftarrow}{ }_{\text {elastic cut }}^{\longleftarrow} \\
& N(s)=1+\frac{s}{\pi} \int_{s_{i}} d s^{\prime} \frac{D\left(s^{\prime}\right) \operatorname{Re~R}\left(\mathrm{s}^{\prime}\right)}{\left[1-i t^{*}\left(s^{\prime}\right) \rho\left(s^{\prime}\right)\right] s^{\prime}\left(s^{\prime}-s\right)} \\
& \begin{array}{c}
D(s)=\exp \left(-\frac{s}{\pi} \int_{s_{t h}} d s^{\prime} \frac{\phi\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}\right) \\
\phi=\arctan \operatorname{Re} t /(1-\operatorname{Im} t \rho)
\end{array}
\end{aligned}
$$

* Dispersive analysis cont.
elastic
inelastic $\quad R\left(s^{\prime}\right) \propto \theta\left(s^{\prime}-\left(4 m_{\pi}\right)^{2}\right)$

$$
F_{2 \pi}(s)=1+\frac{1}{\pi} \int_{s_{t h}} d s^{\prime} \frac{t^{*}\left(s^{\prime}\right) \rho\left(s^{\prime}\right) F_{2 \pi}\left(s^{\prime}\right)+R\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}
$$

solution

$$
\begin{gathered}
F_{2 \pi}(s)=\frac{N(s)}{D(s)} \longleftarrow \stackrel{\text { inelastic cut }}{\text { elastic cut }} \\
N(s)=1+\frac{s}{\pi} \int_{s_{i}} d s^{\prime} \frac{D\left(s^{\prime}\right) \operatorname{Re~} \mathrm{R}\left(\mathrm{~s}^{\prime}\right)}{\left[1-i t^{*}\left(s^{\prime}\right) \rho\left(s^{\prime}\right)\right] s^{\prime}\left(s^{\prime}-s\right)} \\
D(s)=\exp \left(-\frac{s}{\pi} \int_{s_{t h}} d s^{\prime} \frac{\phi\left(s^{\prime}\right)}{s^{\prime}\left(s^{\prime}-s\right)}\right)
\end{gathered}
$$

on shell P -wave $\pi \pi$ amplitude
input: $\quad t(s), R(s)$
on shell, exclusive $\pi \pi \rightarrow \times \quad$ output: $F_{2 \pi}(s)$ amplitudes + associated form factors

$$
\phi=\arctan \operatorname{Re} t /(1-\operatorname{Im} t \rho)
$$

,
$\sum_{\mathrm{x}} \sim \underbrace{\mathrm{F}}_{\mathrm{x}}$

$\pi \pi$ P-wave amplitude
$+$

$$
t=\frac{\eta e^{2 i \delta}-1}{2 i \rho}
$$

$\pi \pi$ P-wave amplitude
$+$

$$
t=\frac{\eta e^{2 i \delta}-1}{2 i \rho}
$$

$\pi \pi$ P-wave amplitude
$+$

$$
t=\frac{\eta e^{2 i \delta}-1}{2 i \rho}
$$

* Inelastic contribution (I)

$$
R=t_{2 \pi, K \bar{K}}^{*} \rho_{2 K} F_{2 K}+\sum_{X} t_{2 \pi, X}^{*} \rho_{X} F_{X}
$$

* Inelastic contribution (I)

$$
R=\underline{t_{2 \pi, K \bar{K}}^{*} \rho_{2 K} F_{2 K}}+\sum_{X} t_{2 \pi, X}^{*} \rho_{X} F_{X}
$$

$$
\bar{X} \quad \rho^{\prime} \text { is inelastic } \longrightarrow
$$

(100

$$
R=t_{2 \pi, K}^{*} \bar{K} \rho_{2 K} F_{2 K}+\sum_{X} t_{2 \pi, X}^{*} \rho_{X} F_{X}
$$

FIG. 8: Real (top) and imaginary (bottom) parts of the isovector, P-wave amplitude, $t_{\pi K}(s) /\left(q_{\pi} q_{K}\right)$ (solid lines). The dashed line is the result of the K-matrix parameterization.

* Inelastic contribution (II)
$R=t_{2 \pi, K \bar{K}}^{*} \rho_{2 K} F_{2 K}+\sum_{X} t_{2 \pi, X}^{*} \rho_{X} F_{X}$

$$
R=t_{2 \pi, K \bar{K}}^{*} \rho_{2 K} F_{2 K}+\sum_{X} t_{2 \pi, X}^{*} \rho_{X} F_{X}
$$

$\operatorname{Im} t_{q \bar{q}, \pi \pi}=\beta_{\pi}(t) s^{\alpha_{q}(t)}$

$$
R=t_{2 \pi, K \bar{K}}^{*} \rho_{2 K} F_{2 K}+\sum_{X} t_{2 \pi, X}^{*} \rho_{X} F_{X}
$$

Mandelstam branchings

$s>\mu^{2}$

$s \sum_{q \bar{q}} t_{2 \pi, q \bar{q}}^{*} \rho_{q \bar{q}} F_{q \bar{q}} \sim s^{\alpha_{q}(0)-1 / 2}$
$\operatorname{Im} t_{q \bar{q}, \pi \pi}=\beta_{\pi}(t) s^{\alpha_{q}(t)}$

$$
t_{q \bar{q}, \pi \pi}=\int d z_{t} t_{q \bar{q}, \pi \pi}(s, t) P_{1}\left(z_{s}\right)
$$

why reggezation enhances amplitudes
"leading Fock components"

multi-particle production in $e^{+} e^{-}$

why reggezation enhances
amplitudes
"leading Fock components"

multi-particle production in $e^{+} e^{-}$

pion e.m form factor (summary)

$$
\operatorname{Im} F_{2 \pi}=t_{2 \pi, 2 \pi}^{*} \rho_{2 \pi} F_{2 \pi}+t_{K \bar{K}, 2 \pi}^{*} \rho_{2 K} F_{K}+\sum_{X} t_{X, 2 \pi}^{*} \rho_{X} F_{X}
$$

curves: dispersion relation solution with reggized quarks to describe large-s region

$$
\operatorname{Im} F_{\pi \gamma}=t_{2 \pi, \pi \gamma}^{*} \rho_{2 \pi} F_{2 \pi}+t_{3 \pi, \pi \gamma}^{*} \rho_{3 \pi} F_{3 \pi}+\sum_{X} t_{X, \pi \gamma}^{*} \rho_{X} F_{X}
$$

pion transition form factor (summary)
resonances ($\omega, 0$)

From the s-channel:
resonances (ρ, ω) at low energies

$$
\operatorname{ImF}(s)=\sum_{X} t_{X}^{*}(s) \rho_{X}(s) F_{X}(s)
$$

$$
\operatorname{Im} F_{\pi \gamma}=t_{2 \pi, \pi \gamma}^{*} \rho_{2 \pi} F_{2 \pi}+t_{3 \pi, \pi \gamma}^{*} \rho_{3 \pi} F_{3 \pi}+\sum_{X} t_{X, \pi \gamma}^{*} \rho_{X} F_{X}
$$

M.Gorchtein, P.Guo, A.P. Szczepaniak arXiv:1102.5558 (PRC in press)

multi-particle ladder
-- Reggized quark (aka diffractive dissociation)

$$
\begin{aligned}
& \text { curves: } \\
& \text { dispersion relation } \\
& \text { solution with reggized } \\
& \text { quarks to describe } \\
& \text { large-s region }
\end{aligned}
$$

Figure 3: Left panel: experimental data for $\left|Q^{2} F_{\eta \gamma}\left(Q^{2}\right)\right|$ in the space-like region from Refs. [23, 22] and high- Q^{2} timelike data from Refs. [24] in comparison with unitarized VDM (solid line) and our full model (VDM + Regge) with $\mu^{2}=5 \mathrm{GeV}^{2}$ (dashed line). Right panel: the same for $\left|Q^{2} F_{\eta^{\prime} \gamma}\left(Q^{2}\right)\right|$.

Summary

* In the available energy range f.factors dominated by resonances
* Complete analysis requires self consistency: (e.g kaon form factor, Im part of inelasticity)
* Importance of Regge trajectories and not elementary particles

