Bloomington, Aug 20th, 2012

Precision Studies of the Proton's Helicity Structure at an EIC

Marco Stratmann

marco@bnl.gov

Soffice of SCIENCE U.S. Department of Energy

talk largely based on E.C. Aschenauer, R. Sassot, MS: arXiv:1206.6041

significant experimental and theoretical progress in past 25+ years, yet many unknowns

recall:	•••	
$\Delta \mathbf{f}(\mathbf{x})$:	$\equiv \mathbf{f}_{\rightarrow}^{\rightarrow}(\mathbf{x})$	$-\mathbf{f}_{\leftarrow}^{\rightarrow}(\mathbf{x})$

significant experimental and theoretical progress in past 25+ years, yet many unknowns

DSSV global fit de Florian, Sassot, MS, Vogelsang

• found to be small at 0.05 < x < 0.2 [RHIC, COMPASS, HERMES]

significant experimental and theoretical progress in past 25+ years, yet many unknowns

DSSV global fit de Florian, Sassot, MS, Vogelsang

- found to be small at 0.05 < x < 0.2 [RHIC, COMPASS, HERMES]
- RHIC can slightly extend x range & reduce uncertainties [500 GeV running & particle correlations]

significant experimental and theoretical progress in past 25+ years, yet many unknowns

- found to be small at 0.05 < X < 0.2 [RHIC, COMPASS, HERMES]
- RHIC can slightly extend x range & reduce uncertainties [500 GeV running & particle correlations]

yet, small x behavior completely unconstrained (determines x-integral which enters proton spin sum)

significant experimental and theoretical progress in past 25+ years, yet many unknowns

- found to be small at 0.05 < X < 0.2 [RHIC, COMPASS, HERMES]
- RHIC can slightly extend x range & reduce uncertainties [500 GeV running & particle correlations]

yet, small x behavior completely unconstrained (determines x-integral which enters proton spin sum)

significant experimental and theoretical progress in past 25+ years, yet many unknowns

significant experimental and theoretical progress in past 25+ years, yet many unknowns

• some indications for non-trivial flavor structure of quark sea

significant experimental and theoretical progress in past 25+ years, yet many unknowns

future RHIC running: Δg - cont'd

future RHIC running: Δg - cont'd

200 + 500 GeV jet, di-jet, pion data will continue to improve knowledge of Δg expect: meaningful constraint down to about x =0.01 not sufficient to reliably determine its integral

projection for run-13

• can achieve first luminosity goals for W-program in run-13 (RHIC milestone)

projection for run-13

projection for run-13

- can achieve first luminosity goals for W-program in run-13 (RHIC milestone)
- potential impact de Florian, Vogelsang

DSSV fit including projected RHIC data

reduction of uncertainties for 0.07 < x < 0.4

projection for run-13

- can achieve first luminosity goals for W-program in run-13 (RHIC milestone)
- potential impact de Florian, Vogelsang

DSSV fit including projected RHIC data

reduction of uncertainties for 0.07 < x < 0.4

tests consistency of low Q² SIDIS data in large x regime
 no access to small x
 no access to Δs

precision studies of the proton's helicity structure

EIC mission: complete survey of nucleon's spin structure

EIC mission: complete survey of nucleon's spin structure

- extract distribution of polarized sea quarks and gluons down to x = 10⁻⁴
- quantify SU(2)/SU(3) breaking of polarized quark sea
- study relevance of 1/Q corrections at low Q² (i.e. consistency of fixed target data)
- explore novel electroweak str. fcts., role of heavy quarks, and Bjorken sum

EIC mission: complete survey of nucleon's spin structure

extract distribution of polarized sea quarks and gluons down to x = 10⁻⁴

quantify SU(2)/SU(3) breaking of polarized quark sea

study relevance of 1/Q corrections at low Q^2 (i.e. consistency of fixed target data)

explore novel electroweak str. fcts., role of heavy quarks, and Bjorken sum

experimental tools to address these questions:

inclusive DIS

scattered lepton (+ tagged charm)

hadronic final state (in case of e-w DIS)

polarized "neutron" beam

EIC mission: complete survey of nucleon's spin structure

experimental tools to address these questions: deliverables inclusive DIS scattered lepton (+ tagged charm) $\begin{array}{l} \Delta g \hspace{0.1cm} g_{1}^{charm} \\ g_{1,4,5}^{W^{\pm}} \\ polarized ``neutron'' beam \end{array}$

EIC mission: complete survey of nucleon's spin structure

deliverables experimental tools to address these questions: prerequisites all measurements need inclusive DIS $\Delta g g_1^{charm}$ $\sqrt{\mathbf{S}}\gtrsim \mathbf{40}\,\mathrm{GeV}$ scattered lepton (+ tagged charm) to access $x < 10^{-3}$ where $g_{1.4.5}^{W^{\pm}}$ hadronic final state (in case of e-w DIS) sea quarks and gluons dominate $g_{1}^{p} - g_{1}^{n}$ modest luminosity requirements polarized "neutron" beam $\mathcal{L} \simeq 10 \, \text{fb}^{-1}$

EIC mission: complete survey of nucleon's spin structure

experimental tools to address these questions:

 $\pi, K, ...$

inclusive DIS scattered lepton (+ tagged charm) hadronic final state (in case of e-w DIS) polarized "neutron" beam semi-inclusive DIS $\Delta u, \Delta \bar{u}$ scattered lepton $\Delta d, \Delta d$ identified pions, kaons, ... $\Delta s, \Delta \overline{s}$

 $\Delta {
m g}~{
m g}_1^{
m charm}$ $\mathbf{g_{1,4,5}^{W^\pm}}$ $g_{1}^{p} - g_{1}^{n}$

deliverables

all measurements need

prerequisites

 $\sqrt{\mathbf{S}}\gtrsim \mathbf{40}\,\mathrm{GeV}$ to access $x < 10^{-3}$ where sea quarks and gluons dominate

modest luminosity requirements $\mathcal{L} \simeq 10 \, \text{fb}^{-1}$

EIC mission: complete survey of nucleon's spin structure

experimental tools to address these questions:

inclusive DIS scattered lepton (+ tagged charm) hadronic final state (in case of e-w DIS) polarized "neutron" beam ^{π,K,...} semi-inclusive DIS scattered lepton

identified pions, kaons, ...

 $\Delta g \hspace{0.1in} \begin{array}{c} g_{1}^{charm} \ g_{1,4,5}^{W^{\pm}} \ g_{1}^{p} - g_{1}^{n} \end{array}$

deliverables

 $egin{array}{lll} \Delta \mathbf{u}, \Delta ar{\mathbf{u}} \ \Delta \mathbf{d}, \Delta ar{\mathbf{d}} \ \Delta \mathbf{s}, \Delta ar{\mathbf{s}} \end{array}$

prerequisites

all measurements need

 $\sqrt{\mathbf{S}}\gtrsim \mathbf{40}\,\mathrm{GeV}$ to access x < 10⁻³ where

to access x < 10⁻³ where sea quarks and gluons dominate

modest luminosity requirements ${\cal L} \simeq 10~{
m fb}^{-1}$

good control of

- systematic uncertainties
- particle ID for SIDIS
- "hadronic method" for e-w
- QED radiative corrections

EIC likely to be realized in stages: e.g. 5 x 100 - 5 x 250 GeV [stage-1 eRHIC] to 20 x 250 GeV [full]

Χ

EIC likely to be realized in stages: e.g. 5 x 100 - 5 x 250 GeV [stage-1 eRHIC] to 20 x 250 GeV [full]

Χ

EIC likely to be realized in stages: e.g. 5 x 100 - 5 x 250 GeV [stage-1 eRHIC] to 20 x 250 GeV [full]

Х

EIC likely to be realized in stages: e.g. 5 x 100 - 5 x 250 GeV [stage-1 eRHIC] to 20 x 250 GeV [full]

Х

EIC likely to be realized in stages: e.g. 5 x 100 - 5 x 250 GeV [stage-1 eRHIC] to 20 x 250 GeV [full]

Χ
key asset of an EIC: kinematic coverage

EIC likely to be realized in stages: e.g. 5 x 100 - 5 x 250 GeV [stage-1 eRHIC] to 20 x 250 GeV [full]

Χ

key asset of an EIC: kinematic coverage

EIC likely to be realized in stages: e.g. 5 x 100 - 5 x 250 GeV [stage-1 eRHIC] to 20 x 250 GeV [full]

Χ

key asset of an EIC: kinematic coverage

EIC likely to be realized in stages: e.g. 5 x 100 - 5 x 250 GeV [stage-1 eRHIC] to 20 x 250 GeV [full]

What can be achieved at an EIC ?

1st step: up-to-date baseline fit

DSSV+ analysis: based on DSSV framework but updated with recent COMPASS data

preparation of DIS and SIDIS pseudo data

- PEPSI MC to generate σ^{++} and σ^{+-} with LO GRSV PDFs

• use relative uncert. of data to generate pseudo data by randomizing around DSSV+ by 1-σ

• SIDIS: incl. typical 5% (10%) uncertainty for pion (kaon) frag. fcts (from DSS analysis)

example: projected DIS data for g₁^p

example: projected DIS data for g₁^p

example: projected DIS data for g₁^p

powerful tool: scaling violations at small x

rough small-x approximation to Q²-evolution:

 $\frac{dg_1}{d\log(Q^2)} \propto -\Delta g(x,Q^2)$

spread in Δg(x,Q²) translates into spread of scaling violations for g₁(x,Q²)

• need x-bins with a least two Q² values to compute derivative (limits x reach somewhat)

• error bars for moderate **10fb⁻¹ per c.m.s. energy**; bands parameterize current DSSV+ uncertainties

DIS scaling violations mainly determine Δg **at small x** (SIDIS scaling violations add to this)

DIS scaling violations mainly determine Δg **at small x** (SIDIS scaling violations add to this)

DIS scaling violations mainly determine Δg **at small x** (SIDIS scaling violations add to this)

in addition, SIDIS data provide detailed flavor separation of quark sea

DIS scaling violations mainly determine Δg at small x (SIDIS scaling violations add to this) in addition, SIDIS data provide detailed flavor separation of quark sea

DIS scaling violations mainly determine Δg **at small x** (SIDIS scaling violations add to this)

in addition, SIDIS data provide detailed flavor separation of quark sea

- includes only "stage-1 data" [even then Q²_{min} can be 2-3 GeV²]
- can be pushed to x=10⁻⁴ with 20 x 250 GeV data [still one can play with Q²_{min}]

"issues":

• (SI)DIS @ EIC limited by systematic uncertainties

need to control rel. lumi, polarimetry, detector performance, ... very well

• QED radiative corrections

need to "unfold" true x,Q² well known problem (HERA) BNL-LDRD project to sharpen tools

- dramatic improvements for [truncated] first moments $\int_{x_{min}}^{x_{min}} \Delta f(x, Q^2) dx$ best visualized by χ^2 profiles obtained with Lagrange multipliers
- example: Δg in x-range 0.001-1 without/with stage-1 EIC data

- dramatic improvements for [truncated] first moments $\int_{x_{min}}^{x_{max}} \Delta f(x, Q^2) dx$ best visualized by χ^2 profiles obtained with Lagrange multipliers
- example: Δg in x-range 0.001-1 without/with stage-1 EIC data

- dramatic improvements for [truncated] first moments $\int_{x_{min}}^{x_{min}} \Delta f(x, Q^2) dx$ best visualized by χ^2 profiles obtained with Lagrange multipliers
- example: Δg in x-range 0.001-1 without/with stage-1 eRHIC data

- read off uncertainties for given $\Delta \chi^2$ $\Delta \chi^2 = 1$ usually not leading to a faithful error take conservative $\Delta \chi^2 = 9$ as in DSSV analysis
- appropriate tolerance $\Delta\chi^2\,$ can be further refined once data are available

- dramatic improvements for [truncated] first moments $\int_{x_{min}}^{x_{min}} \Delta f(x, Q^2) dx$ best visualized by χ^2 profiles obtained with Lagrange multipliers
- example: Δg in x-range 0.001-1 without/with stage-1 eRHIC data

- read off uncertainties for given $\Delta \chi^2$ $\Delta \chi^2 = 1$ usually not leading to a faithful error take conservative $\Delta \chi^2 = 9$ as in DSSV analysis
- appropriate tolerance $\Delta\chi^2\,$ can be further refined once data are available

- dramatic improvements for [truncated] first moments $\int_{x_{min}}^{x_{max}} \Delta f(x, Q^2) dx$ best visualized by χ^2 profiles obtained with Lagrange multipliers
- example: Δg in x-range 0.001-1 without/with stage-1 eRHIC data

- read off uncertainties for given $\Delta \chi^2$ $\Delta \chi^2 = 1$ usually not leading to a faithful error take conservative $\Delta \chi^2 = 9$ as in DSSV analysis
- appropriate tolerance $\Delta\chi^2\,$ can be further refined once data are available

similar improvements for all quark flavors

impact of EIC data (cont'd)

- further improvements with 20 x 250 GeV data at smaller x
- example: ∆g in x-range 0.0001-0.01 without/with EIC data

impact of EIC data (cont'd)

- further improvements with 20 x 250 GeV data at smaller x
- example: ∆g in x-range 0.0001-0.01 without/with EIC data

- somewhat less dramatic for quark sea
- impact varies with quark flavor

impact of systematic uncertainties on Δg

(SI)DIS is systematics limited - how much of a systematic error is tolerable?

assume a 2 (5) % point-to-point systematic uncertainty in analysis of Δg

- 2% has little impact 5% is certainly "borderline"
- recall that SIDIS analysis includes 5 (10)% error from fragmentation

impact of systematic uncertainties on Δg

(SI)DIS is systematics limited - how much of a systematic error is tolerable?

assume a 2 (5) % point-to-point systematic uncertainty in analysis of Δg

- 2% has little impact 5% is certainly "borderline"
- recall that SIDIS analysis includes 5 (10)% error from fragmentation

correlated systematic uncertainties

• lead to a shift

[global fits account for relative normalizations between different experiments]

- polarization measurement is likely to be the dominant source
- relative luminosity error in A_{LL}
 [A_{LL} can be as small as a few times 10⁻⁴ at small x if Δg is small]

closing in on the spin sum rule

- combined correlated uncertainties for $\Delta\Sigma$ and Δg

 results obtained with two Lagrange multipliers

• similar improvement for 0.0001-1 moments needs 20 x 250 GeV data

 can expect approx. 5-10% uncertainties on ΔΣ and Δg but need to control systematics

probing a possible asymmetry in the polarized sea

- current SIDIS data not sensitive to $\Delta ar{\mathbf{u}}(\mathbf{x}) \Delta ar{\mathbf{d}}(\mathbf{x})$ (known to be sizable for unpol. PDFs)
- many models predict sizable asymmetry [large N_c, chiral quark soliton, meson cloud, Pauli blocking]

probing a possible asymmetry in the polarized sea

- current SIDIS data not sensitive to $\Delta \bar{\mathbf{u}}(\mathbf{x}) \Delta \bar{\mathbf{d}}(\mathbf{x})$ (known to be sizable for unpol. PDFs)
- many models predict sizable asymmetry [large N_c, chiral quark soliton, meson cloud, Pauli blocking]

other/related opportunities

other opportunities in polarized (SI)DIS at an EIC

- aim for high precision polarized experiments [progress in polarimetry, detectors, ...]
 - -> should be able to measure **polarized cross sections** rather than spin asymmetries

other opportunities in polarized (SI)DIS at an EIC

- aim for **high precision polarized experiments** [progress in polarimetry, detectors, ...] -> should be able to measure **polarized cross sections** rather than spin asymmetries
- studies presented here are based on lepton *proton* collisions what about neutrons?
 main objective would be fundamental Bjorken sum rule

$$\int_0^1 dx \left[g_1^p(x, Q^2) - g_1^n(x, Q^2) \right] = \frac{1}{6} C_{\mathsf{Bj}} \left[\alpha_s(Q^2) \right] g_A$$

other opportunities in polarized (SI)DIS at an EIC

- aim for **high precision polarized experiments** [progress in polarimetry, detectors, ...] -> should be able to measure **polarized cross sections** rather than spin asymmetries
- studies presented here are based on lepton *proton* collisions what about neutrons?
 main objective would be fundamental Bjorken sum rule

$$\int_0^1 dx \left[g_1^p(x, Q^2) - g_1^n(x, Q^2) \right] = \frac{1}{6} C_{\mathsf{Bj}} \left[\alpha_s(Q^2) \right] g_A$$

- C_{Bi} known up to O(α_s⁴) Kodaira; Gorishny, Larin; Larin, Vermaseren; Baikov, Chetyrkin, Kühn, ...
- theoretically interesting, non-trivial relation to Adler fct. in e⁺e⁻ "Crewther relation"
- experimental challenge: effective neutron beam (³He), very precise polarimetry, ...
- expect to **need data down to 10^{-4}** to determine relevant non-singlet combination Δq_3 to about 1-2 %

"running integral" for Bjorken sum

 can watch out for possible "surprises" at small x some expectations that non-linear effects might set in earlier than in unpol. DIS method: onset of tensions in global fits by varying Q²_{min}

Bartels, Ermolaev, Ryskin; Ermolaev, Greco, Troyan

• can watch out for **possible "surprises" at small x**

some expectations that non-linear effects might set in earlier than in unpol. DIS method: onset of tensions in global fits by varying Q²_{min}

Bartels, Ermolaev, Ryskin; Ermolaev, Greco, Troyan

• can systematically study charm contribution to g₁

- irrelevant so far (<< 1%) in fixed target data
- relevance at EIC strongly depends on size of Δg
- charm not massless for EIC kinematics; need to compute relevant NLO corrections [in progress]

some expectations (LO estimates)

• high Q²: access to novel electroweak structure functions [thanks to 100-1000 x HERA lumi] probes combinations of PDFs different from photon exchange -> flavor separation from DIS

$$\int_{and couplings} \int_{and cou$$

NLO QCD corrections all available

de Florian, Sassot; MS, Vogelsang, Weber; van Neerven, Zijlstra; Moch, Vermaseren, Vogt

- can be easily put into global QCD analyses
- kinematically limited to medium-to-large x region
- novel Bj-type sum rules

e.g.
$$g_5^{W^-,p} - g_5^{W^+,n} = \left(1 - \frac{2\alpha_s}{3\pi}\right)g_A$$

• can extract (anti-)strangeness from CC charm production $W^+s'
ightarrow c$ NLO: Kretzer, MS

MS, Vogelsang, Weber

example

take away message

many unique opportunities to study helicity PDFs at a high-energy polarized lepton-nucleon collider

access to small x to reliably determine Δg and $\Delta \Sigma$

flavor separation in broad x, Q² range to study (a)symmetry of quark sea

access to novel electroweak probes at high Q²

effective neutron beam: study of Bjorken sum rule