

Physics of ep and eA collisions at the LHeC

Anna Stasto (Penn State \& RIKEN BNL \& Krakow INP)

Outline of the talk:

- Physics motivation
- Accelerator and detector design
- Physics possibilities
- Timeline and outlook

CERN-OPEN-2012-015 LHeC-Note-2012-001 GEN Geneva, June 14, 2012

All the results presented here are published in CDR

LHe

Abstract

LHeC Study Group J.L.Abelleira Fernandez ${ }^{16,23}$, C.Adolphsen ${ }^{57}$, A.N.Akay ${ }^{03}$, H.Aksakal ${ }^{39}$, J.L.Albacete ${ }^{52}$, S.Alekhin ${ }^{17,54}$, P.Allport ${ }^{24}$, V.Andreev ${ }^{34}$, R.B.Appleby ${ }^{14,30}$, E.Arikan ${ }^{39}$, N.Armesto ${ }^{53, a}$, G.Azuelos ${ }^{33,64}$, M.Bai ${ }^{37}$, D.Barber ${ }^{14,17,24}$, J.Bartels ${ }^{18}$, O.Behnke ${ }^{17}$, J.Behr ${ }^{17}$, A.S.Belyaev ${ }^{15,56}$, I.Ben-Zvi ${ }^{37}$, N.Bernard ${ }^{25}$, S.Bertolucci ${ }^{16}$, S.Bettoni ${ }^{16}$, S.Biswal ${ }^{41}$, J.Blümlein ${ }^{17}$, H.Böttcher ${ }^{17}$, A.Bogacz ${ }^{36}$, C.Bracco ${ }^{16}$, G.Brandt ${ }^{44}$, H.Braun ${ }^{65}$, S.Brodsky ${ }^{57, \text {, }}$, O.Brüning ${ }^{16}$, E.Bulyak ${ }^{12}$, A.Buniatyan ${ }^{17}$, H.Burkhardt ${ }^{16}$, I.T.Cakir ${ }^{02}$, O.Cakir ${ }^{01}$, R.Calaga ${ }^{16}$, V.Cetinkaya ${ }^{01}$, E.Ciapala ${ }^{16}$, R.Ciftci ${ }^{01}$, A.K.Ciftci ${ }^{01}$, B.A.Cole ${ }^{38}$, J.C.Collins ${ }^{48}$, O.Dadoun ${ }^{42}$, J.Dainton ${ }^{24}$, A.De.Roeck ${ }^{16}$, D.d'Enterria ${ }^{16}$, A.Dudarev ${ }^{16}$, A.Eide ${ }^{60}$, R.Enberg ${ }^{63}$, E.Eroglu ${ }^{62}$, K.J.Eskola ${ }^{21}$, L.Favart ${ }^{08}$, M.Fitterer ${ }^{16}$, S.Forte ${ }^{32}$, A.Gaddi ${ }^{16}$, P.Gambino ${ }^{59}$, H.García Morales ${ }^{16}$, T.Gehrmann ${ }^{69}$, P.Gladkikh ${ }^{12}$, C.Glasman ${ }^{28}$, R. Godbole ${ }^{35}$, B. Goddard ${ }^{16}$, T. Greenshaw ${ }^{24}$, A.Guffanti ${ }^{13}$, V.Guzey ${ }^{19,36}$, C.Gwenlan ${ }^{44}$, T.Han ${ }^{50}$, Y.Hao ${ }^{37}$, F.Haug ${ }^{16}$, W.Herr ${ }^{16}$, A.Hervé ${ }^{27}$, B.J.Holzer ${ }^{16}$, M.Ishitsuka ${ }^{58}$, M.Jacquet ${ }^{42}$, B.Jeanneret ${ }^{16}$, J.M.Jimenez ${ }^{16}$, J.M.Jowett ${ }^{16}$, H.Jung ${ }^{17}$, H.Karadeniz ${ }^{02}$, D.Kayran ${ }^{37}$, A.Kilic ${ }^{62}$, K.Kimura ${ }^{58}$, M.Klein ${ }^{24}$, U.Klein ${ }^{24}$, T.Kluge ${ }^{24}$, F.Kocak ${ }^{62}$, M.Korostelev ${ }^{24}$, A.Kosmicki ${ }^{16}$, P.Kostka ${ }^{17}$, H.Kowalski ${ }^{17}$, G.Kramer ${ }^{18}$, D.Kuchler ${ }^{16}$, M.Kuze ${ }^{58}$, T.Lappi ${ }^{21, c}$, P.Laycock ${ }^{24}$, E.Levichev 40, S.Levonian ${ }^{17}$, V.N.Litvinenko ${ }^{37}$, A.Lombardi ${ }^{16}$, J.Maeda ${ }^{58}$, C.Marquet ${ }^{16}$, B.Mellado ${ }^{27}$, K.H.Mess ${ }^{16}$, A.Milanese ${ }^{16}$, S.Moch ${ }^{17}$, I.I.Morozov ${ }^{40}$, Y.Muttoni ${ }^{16}$, S.Myers ${ }^{16}$, S.Nandi ${ }^{55}$, Z.Nergiz ${ }^{39}$, P.R.Newman ${ }^{06}$, T.Omori ${ }^{61}$, J.Osborne ${ }^{16}$, E.Paoloni ${ }^{49}$, Y.Papaphilippou ${ }^{16}$, C.Pascaud ${ }^{42}$, H.Paukkunen ${ }^{53}$, E.Perez ${ }^{16}$, T.Pieloni ${ }^{23}$, E.Pilicer ${ }^{62}$, B.Pire ${ }^{45}$, R.Placakyte ${ }^{17}$, A.Polini ${ }^{07}$, V.Ptitsyn ${ }^{37}$, Y.Pupkov ${ }^{40}$, V.Radescu ${ }^{17}$, S.Raychaudhuri ${ }^{35}$, L.Rinolfi ${ }^{16}$, R.Rohini ${ }^{35}$, J.Rojo ${ }^{16,31}$, S.Russenschuck ${ }^{16}$, M.Sahin ${ }^{03}$, C.A.Salgado ${ }^{53, a}$, K.Sampei ${ }^{58}$, R.Sassot ${ }^{09}$, E.Sauvan ${ }^{04}$, U.Schneekloth ${ }^{17}$, T.Schörner-Sadenius ${ }^{17}$, D.Schulte ${ }^{16}$, A.Senol ${ }^{22}$, A.Seryi ${ }^{44}$, P.Sievers ${ }^{16}$, A.N.Skrinsky ${ }^{40}$, W.Smith ${ }^{27}$, H.Spiesberger ${ }^{29}$, A.M.Stasto ${ }^{48, d}$, M.Strikman ${ }^{48}$, M.Sullivan ${ }^{57}$, S.Sultansoy ${ }^{03, e}$, Y.P.Sun ${ }^{57}$ B.Surrow ${ }^{11}$, L.Szymanowski ${ }^{66, f}$, P.Taels ${ }^{05}$, I.Tapan 62, T.Tasci ${ }^{22}$, E.Tassi ${ }^{10}$, H.Ten.Kate ${ }^{16}$, J.Terron ${ }^{28}$, H.Thiesen 16, L.Thompson ${ }^{14,30}$, K.Tokushuku ${ }^{61}$, R.Tomás García ${ }^{16}$, D.Tommasini ${ }^{16}$, D.Trbojevic ${ }^{37}$, N.Tsoupas ${ }^{37}$, J.Tuckmantel ${ }^{16}$, S.Turkoz ${ }^{01}$, T.N.Trinh ${ }^{47}$, K.Tywoniuk ${ }^{26}$, G.Unel ${ }^{20}$, J.Urakawa ${ }^{61}$, P.VanMechelen ${ }^{05}$, A.Variola ${ }^{52}$, R.Veness ${ }^{16}$, A.Vivoli ${ }^{16}$, P.Vobly ${ }^{40}$, J.Wagner ${ }^{66}$, R.Wallny ${ }^{68}$, S.Wallon ${ }^{43,46, f}$, G.Watt ${ }^{16}$, C.Weiss ${ }^{36}$, U.A.Wiedemann ${ }^{16}$, U.Wienands ${ }^{57}$, F.Willeke ${ }^{37}$, B.-W.Xiao ${ }^{48}$, V.Yakimenko ${ }^{37}$, A.F.Zarnecki ${ }^{67}$, Z.Zhang ${ }^{42}$, F.Zimmermann ${ }^{16}$, R.Zlebcik ${ }^{51}$, F.Zomer ${ }^{42}$

${ }^{\mathrm{LH} \mathrm{H}} \mathrm{O}$ Physics Motivation for ep/eA in TeV range

- Details of parton structure of the nucleon (from ep,ed/eA), full unfolding of PDFs. Measurement of GPDs and unintegrated PDFs.
- Mapping the gluon field down to very low x. Saturation physics.
- Heavy quarks, factorization, diffraction, electroweak processes.
- Properties of Higgs. Very good sensitivity to: H to bbar, H to WW coupling in the $120-130 \mathrm{GeV}$ mass range.
- Searches and understanding of new physics.Very precise measurement of the coupling constant. Leptoquarks, excited leptons...
- Deep inelastic scattering off nuclei (lead and deuteron). Nuclear parton distributions. Pinning down the initial state for heavy ion collisions.
- Understanding nuclear effects of QCD radiation and hadronization.

LH_{C}

LHeC kinematics

ep/eA collisions

$$
\begin{aligned}
E_{p} & =7 \mathrm{TeV} \\
E_{A} & =2.75 \mathrm{TeV} / \text { nucleon lead } \\
E_{d} & =3.5 \mathrm{TeV} / \text { nucleon deuteron } \\
E_{e} & =50-150 \mathrm{GeV} \\
\sqrt{s} & \simeq 1-2 \mathrm{TeV}
\end{aligned}
$$

- Requirements:
* Luminosity $\sim 10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$. eA: $L_{e n} \sim 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
* Acceptance: I-I79 degrees
(low-x ep/eA).
* Tracking to I mrad.
* EMCAL calibration to 0.1 \%.
* HCAL calibration to 0.5 \%.
* Luminosity determination to I \%.
* Compatible with LHC operation.

How Could ep be Done using LHC?

... whilst allowing simultaneous ep and pp running...

RING-RING

- First considered (as LEPxLHC) in 1984 ECFA workshop
- Main advantage: high peak lumi obtainable ($\sim 2.10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
- Main difficulties: building round existing LHC, e beam energy (60 GeV ?) and lifetime limited by synchrotron radiation

- Previously considered as `QCD explorer' (also THERA)
- Main advantages: low interference with LHC, high $\mathrm{E}_{\mathrm{e}}(\rightarrow 150 \mathrm{GeV}$?) and lepton polarisation, LC relation
- Main difficulties: no previous experience exists
preferred option

Accelerator design in linac-ring option

500 MeV injection, 3 turns, 2 linacs, 10 GeV energy recovery, 90% polarisation

$$
L=10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

Higher energy:

140 GeV linac ILC type $31.5 \mathrm{MV} / \mathrm{m}$
without energy recovery lower luminosity

Detector Acceptance Requirements

Access to $\mathrm{Q}^{2}=1 \mathrm{GeV}^{2}$ in ep mode for all $x>5 \times 10^{-7}$ requires scattered electron acceptance to 179°

Similarly, need 1° acceptance in outgoing proton direction to contain hadrons at high x (essential for good kinematic reconstruction)

Detector design

Forward/backward asymmetry in energy deposited and thus in geometry and technology
Present dimensions: LxD =14x9m² [CMS $21 \times 15 \mathrm{~m}^{2}$, ATLAS $45 \times 25 \mathrm{~m}^{2}$]
Taggers at -62m (e), 100m (p, LR), -22.4m (Y, RR), $\mathbf{+ 1 0 0 \mathrm { m } (\mathrm { n }) , + 4 2 0 \mathrm { m } (\mathrm { p }) ~}$

$\mathrm{LH}_{\mathrm{C}} \mathrm{O}$

Physics chapter of the CDR

II Physics 33
3 Precision QCD and Electroweak Physics 34
3.1 Inclusive deep inelastic scattering 35
3.1.1 Cross sections and structure functions 35
3.1.2 Neutral current 35
3.1.3 Charged current 37
3.1.4 Cross section simulation and uncertainties 39
3.1.5 Longitudinal structure function $\mathbf{F}_{\mathbf{L}}$ 41
3.2 Determination of parton distributions 47
3.2.1 QCD fit ansatz 48
3.2.2 Valence quarks 49
3.2.3 Probing $q \neq \bar{q}$ and $u^{p} \neq d^{n}$ 52
3.2.4 Strange quarks 54
3.2.5 Releasing PDF constraints 54
3.2.6 Top quarks 55
3.3 Gluon distribution61
3.4 Prospects to measure the strong coupling constant 61
3.4.1 Status of the DIS measurements of α_{s}
63
3.4.2 Simulation of α_{s} determination 65
3.6 Charm and beauty production 68
3.6.1 Introduction and overview of expected highlights 68
3.6.2 Total production cross sections for charm, beauty and top quarks 71
3.6.3 Charm and beauty production in DIS 72
3.6.4 Determination of the charm mass parameter in VFN schemes 76
3.6.5 Intrinsic heavy flavour 78
3.7 High p_{t} jets 78
81
3.7.1 Jets in $e p$ 81
3.7.2 Jets in $\gamma \mathrm{A}$ 87
3.8 Total photoproduction cross section 89
90
3.9 Electroweak physics 90
3.9.1 Context
91
92
3.9.2 Light quark weak neutral current couplings 93
4 Physics at High Parton Densities 101
4.1 Physics at small x 101
4.1.1 High energy and density regime of QCD 101
4.1.2 Status following HERA data
116
116
4.1.3 Low- x physics perspectives at the LHC 119
4.1.4 Nuclear targets 119
4.2 Prospects at the LHeC 124
4.2.1 Strategy: decreasing \boldsymbol{x} and increasing \boldsymbol{A}
124
124
23 Exclusive production 132
4.2.4 Inclusive diffraction 152
4.2.5 Jet and multi-jet observables, parton dynamics and fragmentation 166
5 New Physics at High Energy 182
5.1 New physics in inclusive DIS at high Q^{2} 182
5.1.1 Quark substructure 183
5.1.2 Contact interactions 184
5.1.3 Kaluza-Klein gravitons in extra-dimensions 186
5.2 Leptoquarks and leptogluons 188
5.2.1 Phenomenology of leptoquarks in ep collisions 188
5.2.2 The Buchmüller-Rückl-Wyler Model 18
5.2.3 Phenomenology of leptoquarks in pp collisions 189
5.2.4 Contact term approach 191
5.2.5 Current status of leptoquark searches 191
5.2.6 Sensitivity on leptoquarks at LHC and at LHeC 192
5.2.7 Determination of LQ properties 192
5.2.8 Leptoquarks as R-parity violating squarks 198
5.2.9 Leptogluons 200
5.3 Excited leptons and other new heavy leptons 200
5.3.1 Excited fermion models 201
5.3.2 Simulation and results 202
5.4 New physics in boson-quark interactions 205
5.4.1 An LHeC-based $\gamma \mathbf{p}$ collider 205
5.4.2 Anomalous single top production at a $\gamma \mathrm{p}$ collider 205
5.4.3 Excited quarks in γ p collisions at the LHeC 208
5.4.4 Quarks from a fourth generation at LHeC 209
5.4.5 Diquarks at LHeC 209
5.4.6 Quarks from a fourth generation in $W q$ interactions 210
5.5 Sensitivity to a Higgs boson 210
5.5.1 Introductory remarks 21
5.5.2 Higgs production at the LHeC 213
5.5.3 Observability of the signal 214
5.5.4 Probing anomalous $H W W$ couplings at the LHeC 220

$\mathrm{LH}_{\mathrm{C}} \mathrm{O}$

Inclusive measurements

LHeC

Reduced cross section $\quad \frac{d^{2} \sigma_{N C}}{d x d Q^{2}}=\frac{2 \pi \alpha^{2} Y_{+}}{Q^{4} x} \cdot \sigma_{r, N C}$

Impact of LHeC on PDFs: zoom on low x

* Experimental uncertainties are shown at the starting scale $\mathrm{Q}^{2}=1.9 \mathrm{GeV}^{2}$

Impact of LHeC on PDFs: zoom on high x

* Experimental uncertainties are shown at the starting scale $\mathrm{Q}^{2}=1.9 \mathrm{GeV}^{2}$

HERAPDF1.0 settings, $Q^{2}=1.9 \mathrm{GeV}^{2}$, Experimental Uncert.

HERAPDF1.0 settings, $Q^{2}=1.9 \mathrm{GeV}^{2}$, Experimental Uncert.

Inclusive measurements

Longitudinal structure function simulation.
Electron energies and luminosities:

$$
(60,1),(30,0.3),(20,0.1),(10,0.05)\left(\mathrm{GeV}, \mathrm{fb}^{-1}\right)
$$

Studies also done with lowered proton energies. Maximum y for all beam energies can be high.
Results from both simulations are similar.

(1

$\mathrm{LH}_{\mathrm{C}} \mathrm{O}$

Heavy flavor in ep

Simulations with RAPGAP MC 3.I

Impressive extension of the phase space.
Both small and large x.

RAPGAP MC

Crucial as a benchmark for the heavy flavor production in nuclei. Can test thoroughly the nuclear effects of in heavy quark production.

Dijets in ep

- Incoming gluon can have sizeable transverse momentum.
- Decorrelation of pairs of jets, which increases with decreasing value of x.
- Collinear approach typically produces narrow back-to-back configuration. Need to go to higher orders(NLO not sufficient).
- Similar process can be studied in eA, sensitivity to density effects.

Forward jets

Simulations for

$$
\Theta>3^{o} \quad \text { and } \quad \Theta>1^{o}
$$

Angular acceptance crucial for this measurement.

$$
\text { With } \quad \Theta>10^{\circ}
$$

all the signal for forward jets is lost.
Can explore also forward pions. Lower rates but no dependencies on the jet algorithms. Nonperturbative hadronisation effects included effectively in the fragmentation functions.

- Forward jet provides the second hard scale.
- By selecting it to be of the order of the photon virtuality, collinear configurations can be suppressed.
- Forward jet, large phase space for gluon emission.
- DGLAP typically underestimates the forward jet production.

${ }^{\mathrm{LH} \mathrm{H}}$ Nuclear structure functions at LHeC

Nuclear ratio for structure function or a parton density:

$$
R_{f}^{A}\left(x, Q^{2}\right)=\frac{f^{A}\left(x, Q^{2}\right)}{A \times f^{N}\left(x, Q^{2}\right)}
$$

$$
\text { Nuclear effects } \quad R^{A} \neq 1
$$

LHeC potential: precisely measure partonic structure of the nuclei at small x .

Nuclear structure functions measured with very high accuracy.

${ }^{\mathrm{LH} \mathrm{H} \mathrm{O}}$ Nuclear parton distributions at LHeC

Global NLO fit of nuclear PDFs with the LHeC pseudodata included

$\mathrm{LH}_{\mathrm{C}} \mathrm{O}$

Radiation and Hadronization

- LHeC can provide information on radiation and hadronization.
- Large lever arm in energy allows probing different timescales.
- Important for HI collisions .

Low energy: hadronization inside

High energy: partonic evolution altered in nuclear medium

$$
R_{A}^{k}\left(\nu, z, Q^{2}\right)=\frac{1}{N_{A}^{e}} \frac{d N_{A}^{k}}{d \nu d z} / \frac{1}{N_{p}^{e}} \frac{d N_{p}^{k}}{d \nu d z}
$$

$\mathrm{LH}_{\mathrm{e}} \mathrm{O}$

Diffraction

$$
\begin{gathered}
x_{I P}=\frac{Q^{2}+M_{X}^{2}-t}{Q^{2}+W^{2}} \\
\beta=\frac{Q^{2}}{Q^{2}+M_{X}^{2}-t} \\
x_{B j}=x_{I P} \beta
\end{gathered}
$$

momentum fraction of the Pomeron w.r.t hadron momentum fraction of parton w.r.t Pomeron

New domain of diffractive masses
Mx can include W/Z/beauty

$\mathrm{LH}_{\mathrm{e}} \mathrm{O}$

Inclusive diffraction in eA

coherent
Diffractive structure function for Pb

Study of diffractive dijets, heavy quarks for the factorization tests

Factorization in diffraction

Inclusive diffraction

Diffractive dijets

QCD factorization holds for inclusive and exclusive processes if:

- photon is point-like (Q^{2} is high enough)
- higher twist corrections are negligible (problems for small Q^{2} around $\beta \simeq 1$) QCD factorization theoretically proven for DIS (Collins 1998)

$$
\mathrm{d} \sigma^{D}(\gamma p \rightarrow X p)=\sum_{\text {parton }}^{i} f_{i}^{D}\left(\beta, Q^{2,} x_{I P}, t\right) * \mathrm{~d} \hat{\sigma}^{\gamma i}\left(x, Q^{2}\right)
$$

f_{i}^{D} DPDFs, obeys DGLAP evolution, process independent
$\mathrm{d} \hat{\sigma}^{\gamma i}$ Process dependent partonic x-section, calculable within pQCD

DIS Dijets HERA vs LHeC Comparison of Synthetic Data

- Higher CMS energy makes higher scales accessible

Diffractive Dijet Photoproduction

```
Direct
No photon remnant
x}=1\mathrm{ (at parton-level)
Dominant for high Q }\mp@subsup{Q}{}{2
(near DIS region)
```


Additional interactions which spoil rap. Gap? (like in pp)

PHP Dijets HERA vs LHeC

- Due to much higher $E_{T}^{\text {jet }}$ jets at LHeC is LHeC better tool to investigate possible factorisation breaking

Only statistical errors of synthetic data depicted
No acceptance and detector smearing effects take into account

Calculated at parton-level by Frixione NLO adapted to diffraction

$$
\begin{gathered}
920+27.5 \text { HERA }\left(400 \mathrm{pb}^{-1}\right) \\
Q^{2}<2 \mathrm{GeV}^{2} \wedge 0.2<y<0.8 \\
x_{I P}<0.03 \wedge|t|<1 \mathrm{GeV}^{2} \\
M_{Y}<1.6 \mathrm{GeV} \\
E_{\text {jet }}^{\text {jel }}>6 \mathrm{GeV} \\
E_{T}^{\text {jel2 }}>4 \mathrm{GeV} \\
-1<\eta^{\text {jets }}<2
\end{gathered}
$$

$$
\begin{gathered}
7000+60 \mathrm{LHeC}\left(10 \mathrm{fb}^{-1}\right) \\
Q^{2}<2 \mathrm{GeV}^{2} \wedge 0.2<y<0.8 \\
X_{I P}<0.01 \wedge|t|<1 \mathrm{GeV}^{2} \\
M_{Y}<1.6 \mathrm{GeV} \\
E_{T}^{\text {jet1 }}>10 \mathrm{GeV} \\
E_{T}^{\text {jet2 }}>6.5 \mathrm{GeV} \\
-3<\eta^{\text {jets }}<3
\end{gathered}
$$

Exclusive diffraction

- Exclusive diffractive production ofVM is an excellent process for extracting the dipole amplitude and GPDs
- Suitable process for estimating the 'blackness' of the interaction.
- t-dependence provides an information about the impact parameter profile of the amplitude.

Central black region growing with decrease of x.

Large momentum transfer t probes small impact parameter where the density of interaction region is most dense.

${ }^{L} \mathrm{H}_{\mathrm{C}} \mathrm{O}$ Exclusive diffraction: predictions

$$
\sigma^{\gamma p \rightarrow J / \Psi+p}(W)
$$

- b-Sat dipole model (Golec-Biernat,

Wuesthoff, Bartels, Motyka, Kowalski, Watt)

- eikonalised: with saturation
- I-Pomeron: no saturation

Large effects even for the tintegrated observable.

Different W behavior depending whether saturation is included or not.

Simulated data are from extrapolated fit to HERA data

LHeC can distinguish between the different scenarios.

${ }^{\text {LHeO }}$ Exclusive diffraction: t-dependence

Photoproduction in bins of W and t .

Already for small values of t and smallest energies large discrepancies between the models. LHeC can discriminate.

Large values of t : increased sensitivity to small impact parameters.

Amplitude as a function of the impact parameter.

$\mathrm{LH}_{\mathrm{e}} \mathrm{O}$

Exclusive diffraction on nuclei

Possibility of using the same principle to learn about the gluon distribution in the nucleus. Possible nuclear resonances at small t ?

t-dependence: characteristic dips.
Challenges: need to distinguish between coherent and incoherent diffraction. Need dedicated instrumentation, zero degree calorimeter.

$\mathrm{LH}_{\mathrm{C}} \mathrm{O}$

Exclusive processes: DVCS

MILOU generator using Frankfurt, Freund, Strikman model.

$\mathcal{L}=1 \mathrm{fb}^{-1}$
$\theta=1^{\circ}$
$p_{T}^{\gamma}=2 \mathrm{GeV}$
$2.5<Q^{2}<40 \mathrm{GeV}^{2}$
low x

$\mathcal{L}=100 \mathrm{fb}^{-1}$
$\theta=10^{\circ}$
$p_{T}^{\gamma}=5 \mathrm{GeV}$
$50<Q^{2} \simeq 500 \mathrm{GeV}^{2}$
large scales

$\mathrm{LH}_{e} \mathrm{O}$

Measurement of strong coupling

Unification of coupling constants?

case	cut $\left[Q^{2}\right.$ in $\left.\mathrm{GeV}^{2}\right]$	α_{S}	士uncertainty	relative precision in \%
HERA only $(14 \mathrm{p})$	$Q^{2}>3.5$	0.11529	0.002238	1.94
HERA+jets $(14 \mathrm{p})$	$Q^{2}>3.5$	0.12203	0.000995	0.82
LHeC only $(14 \mathrm{p})$	$Q^{2}>3.5$	0.11680	0.000180	0.15
LHeC only $(10 \mathrm{p})$	$Q^{2}>3.5$	0.11796	0.000199	0.17
LHeC only (14p)	$Q^{2}>20$.	0.11602	0.000292	0.25
LHeC+HERA $(10 \mathrm{p})$	$Q^{2}>3.5$	0.11769	0.000132	0.11
LHeC+HERA $(10 \mathrm{p})$	$Q^{2}>7.0$	0.11831	0.000238	0.20
LHeC+HERA $(10 \mathrm{p})$	$Q^{2}>10$.	0.11839	0.000304	0.26

Strong coupling is least known of all couplings
Grand unification predictions suffer from uncertainty
LHeC: per mille accuracy
Verify at large values of photon virtuality, smaller influence of HT effects

Higgs at the LHeC

CC Higgs production cross-section $\left(\mathrm{M}_{\mathrm{H}}=120 \mathrm{GeV}\right)$

Electron beam energy	50 GeV	100 GeV	150 GeV
cross-section (fib)	81	165	239

Higs can be studied at the LHeC. High rates in CC interactions. bbar channel cleaner at the LHeC. Necessary to confirm the SM Higgs.

Higgs production cross-section
at $V_{s}=1.98 \mathrm{TeV}\left(\mathrm{E}_{\mathrm{e}}=140 \mathrm{GeV}, \mathrm{E}_{\mathrm{p}}=7 \mathrm{TeV}\right)$

Higgs at the LHeC
Talk by Masaki Ishitsuka at Chavannes-de-Bogis

- Beam energy:
- Electron beam
- Proton beam
- SM Higgs mass
- Luminosity

150 GeV 7 TeV

120 GeV $10 \mathrm{fb}^{-1}$

Signal and background cut flow

	$\mathbf{H} \rightarrow \mathbf{b b}$	CC DIS	$\mathbf{N C}$ bbj	S / \mathbf{N}	$\mathrm{S} / \sqrt{ } \mathbf{N}$
NC rejection	816	123000	4630	6.38×10^{-3}	2.28
+ b-tag requirement + Higges invariant mass	178	1620	179	9.92×10^{-2}	4.21
All cuts	84.6	29.1	18.3	1.79	12.3

- Beam energy:
- Electron beam
- Proton beam
- SM Higgs mass
- Luminosity
$150 \mathrm{GeV} \Rightarrow 60 \mathrm{GeV}$
7 TeV
120 GeV
$10 \mathrm{fb}^{-1} \Rightarrow 100 \mathrm{fb}^{-1}$

	$\mathbf{E}_{e}=150 \mathrm{GeV}$ $\left(10 \mathrm{fb}^{-1}\right)$	$\mathrm{E}_{\mathrm{e}}=60 \mathrm{GeV}$ $\left(100 \mathrm{fb}^{-1}\right)$
$\mathrm{H} \rightarrow$ bb signal	84.6	248
S/N	1.79	1.05
S $/ \sqrt{ } \mathrm{N}$	12.3	16.1

- We can explore other channels
- NC Higgs production in ZZ fusion
- Other light Higgs decay channels

Impact of LHeC on searches for New Physics

- M.Kramer and R.Klees working on impact of improved PDF fits on theoretical predictions for SUSY process:
- Example: gl-gl production (assuming m_gl = m_sq)
- without(blue, CTEQ6) and with (green) LHeC PDF

Improve of
factor of 2-3 @ 2 TeV
factor of 10 at 3.5 TeV
preliminary

Precise determination of the PDFs at higher scales absolutely necessary for searches of New Physics.

Draft LHC Schedule for the coming decade

as shown by S. Myers at EPS 2011 Grenoble

Summary

- LHeC has rich and unique physics program, DIS essential part of HEP.
- Precision QCD and Electroweak studies. Understanding the regime of small x. Constraints on BSM physics.
- eA program (DIS of lead nuclei and deuteron) has complementarity with PA and AA physics. Pinning down the initial state in nuclear collisions.
- Conceptual Design Report supported and monitored by CERN, ECFA and NuPECC, has been published.
- Next steps:
- Presentation in European Strategy for Particle Physics meeting in Cracow in September 2012.
- Collaborations are soon to be build for further design, machine and detector.
- CERN mandate for Technical Design Report in 2015.

Backup

 Low x and saturation

HERA established strong growth of the gluon density towards small x
Parton saturation: recombination of gluons at sufficiently high densities leading to nonlinear modification of the evolution equations.
Emergence of a dynamical scale: saturation scale dependent on energy.

What we learned from HERA about saturation?

Linear DGLAP evolution works well at HERA. Hints of saturation at low Q and low x : deterioration of the global fit in that region.
Large diffractive component.
Success of the dipole models in the description of the data.
The models point at the low value of the saturation scale
LHeC would provide an access to a kinematic regime where the
saturation scale is perturbative

${ }^{\mathrm{LH}_{0} \mathrm{O}}$ Strategy for making target more 'black'

LHeC would deliver a two-pronged approach:

$\ln A$

Organisation for CDR

Scientific Advisory Committee

Guido Altarelli (Roma)
Sergio Bertolucci (CERN)
Stan Brodsky (SLAC)
Allen Caldwell (MPI Muenchen) - Chair
Swapan Chattopadhyay (Cockcroft Institute)
John Dainton (Liverpool)
John Ellis (CERN)
Jos Engelen (NWO)
Joel Feltesse (Saclay)
Roland Garoby (CERN)
Rolf Heuer (CERN)
Roland Horisberger (PSI)
Young-Kee Kim (Fermilab)
Aharon Levy (Tel Aviv)
Lev Lipatov (St. Petersburg)
Karlheinz Meier (Heidelberg)
Richard Milner (MIT)
Joachim Mnich (DESY)
Steve Myers (CERN)
Guenther Rosner (Glasgow)
Albert De Roeck (CERN)
Anthony Thomas (JLab)
Steve Vigdor (Brookhaven)
Ferdinand Willeke (Brookhaven)
Frank Wilczek (MIT)

Working Group Convenors

Accelerator Design

Oliver Bruening (CERN)
John Dainton (Liverpool)
Interaction Region
Bernhard Holzer(CERN)
Uwe Schneekloth (DESY)
Pierre van Mechelen (Antwerpen)

Detector Design

Peter Kostka (DESY)
Alessandro Polini (Bologna)
Rainer Wallny (Zurich)
New Physics at Large Scales
Georges Azuelos (Montreal)
Emmanuelle Perez (CERN)
Georg Weiglein (Hamburg)
Precision QCD and Electroweak
Olaf Behnke (DESY)
Paolo Gambino (Torino)
Thomas Gehrmann (Zurich)
Claire Gwenlan (Oxford)
Physics at High Parton Densities
Néstor Armesto (Santiago de Compostela)
Brian A. Cole (Columbia)
Paul R. Newman (Birmingham)
Anna M. Stasto (PennState)

CERN Referees
Ring Ring Design
Kurt Huebner (CERN)
Alexander N. Skrinsky (INP Novosibirsk)
Ferdinand Willeke (BNL)
Linac Ring Design
Reinhard Brinkmann (DESY)
Andy Wolski (Cockcroft)
Kaoru Yokoya (KEK)
Energy Recovery
Georg Hoffstaetter (Cornell)
Ilan Ben Zvi (BNL)
Magnets
Neil Marks (Cockcroft)
Martin Wilson (CERN)
Interaction Region
Daniel Pitzl (DESY)
Mike Sullivan (SLAC)
Detector Design
Philippe Bloch (CERN)
Roland Horisberger (PSI)
Installation and Infrastructure
Sylvain Weisz (CERN)
New Physics at Large Scales
Cristinel Diaconu (IN2P3 Marseille)
Gian Giudice (CERN)
Michelangelo Mangano (CERN)
Precision QCD and Electroweak
Guido Altarelli (Roma)
Vladimir Chekelian (MPI Munich)
Alan Martin (Durham)
Physics at High Parton Densities
Alfred Mueller (Columbia)
Raju Venugopalan (BNL)
Michele Arneodo (INFN Torino)

Nuclear physics in eA complementarity to PA,AA at LHC

Precision measurement of the initial state. Nuclear structure functions.

Particle production in the early stages.
Factorization eA/pA/AA.
Modification of the QCD radiation and hadronization in the nuclear medium.

Detector : tracking system

Transverse momentum $\Delta \mathrm{p}_{\mathrm{t}} / \mathrm{p}_{\mathrm{t}}^{2} \rightarrow 6 \times 10^{-4} \mathrm{GeV}^{-1}$ transverse impact parameter $\rightarrow 10 \mu \mathrm{~m}$

Central Pixel Tracker

4 layer CPT:
min-inner- $\mathrm{R}=3.1 \mathrm{~cm}$
max-inner- $\mathrm{R}=10.9 \mathrm{~cm}$
$\Delta R=15 . \mathrm{cm}$

Central Si Tracker

$$
\begin{array}{ll}
\hline \text { CST - } \Delta R & 3.5 \mathrm{~cm} \text { each } \\
\text { I. layer: inner } R=21.2 \mathrm{~cm} \\
\text { 2. layer: } & =25.6 \mathrm{~cm} \\
\text { 3. layer: } & =31.2 \mathrm{~cm} \\
\text { 4. layer: } & \\
\text { 5. layer: } & =36.7 \mathrm{~cm} \\
\hline
\end{array}
$$

Central Forward/Backward Tracker

4 CFT/CBT

min-inner-R $=3.1 \mathrm{~cm}$, max-inner- $\mathrm{R}=10.9 \mathrm{~cm}$

Forward Si Tracker
FST - $\Delta Z=8 . \mathrm{cm}$
min-inner-R $=3.1 \mathrm{~cm}$; max-inner-R= 10.9 cm outer $R=46.2 \mathrm{~cm}$
Planes I-5:
$\mathrm{Z}_{5-1}=370 . / 330 . / 265 . / 190 . / 130 . \mathrm{cm}$

Backward Si Tracker
BST - $\Delta Z=8 . \mathrm{cm}$
min-inner-R $=3.1 \mathrm{~cm}$; max-inner- $\mathrm{R}=10.9 \mathrm{~cm}$
outer $R=46.2 \mathrm{~cm}$
Planes I-3:
$z_{1-3}=-130 . /-170 . /-200 . \mathrm{cm}$

Detector : calorimetry

Liquid Argon EM calorimeter Hadronic Tile calorimeter

$\mathrm{LH}_{\mathrm{C}} \mathrm{O}$

F_{2}, FL structure functions at low x

Precision measurements of structure functions at very low x : test DGLAP, small x , saturation inspired approaches.

approx. 2\% error on the F2 pseudodata, and 8\% on the FL pseudodata ,should be able to distinguish between some of the scenarios.

How Could ep be Done using LHC?

... whilst allowing simultaneous ep and pp running...

RING-RING

- First considered (as LEPxLHC)
in 1984 ECFA workshop
- Main advantage: high peak lumi obtainable ($\sim 2.10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$)
- Main difficulties: building round existing LHC, e beam energy (60 GeV ?) and lifetime limited by synchrotron radiation

- Previously considered as `QCD explorer' (also THERA)
- Main advantages: low interference with LHC, high $\mathrm{E}_{\mathrm{e}}(\rightarrow 150 \mathrm{GeV}$?) and lepton polarisation, LC relation
- Main difficulties: lower luminosity $<10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$? at reasonable power, no previous experience exists

Nuclear parton distributions

Current status: nuclear parton distribution functions are poorly known at small x. Especially gluon density, below $x=0.01$ can be anything between 0 and I....

$\mathrm{LH}_{\mathrm{C}} \mathrm{O}$

Diffractive mass distribution

New domain of diffractive masses. Mx can include W/Z/beauty

