Helicity: Experimental Status

Matthias Grosse Perdekamp, University of Illinois

International Workshop on Physics Opportunities @ an ElecTron Ion Collider August 20-22, 2012 Indiana University, Bloomington, IN, USA

o The Experimental Effort

o Quark and Sea Quark Helicity

- ➔ DIS, SIDIS, pp
- \rightarrow new FFs for global analysis
- → results from global analysis (previous talk!)
- \rightarrow (high x)

o Gluon Helicity

- → DIS, SIDIS, pp
- ➔ results from global analysis (previous talk!)
- ➔ extending x-range at RHIC
- \rightarrow low x at the EIC

• Goals and Some Resulting Challenges for the EIC

Nucleon Spin Structure: 35 Years of Experiment

Quark Helicity – Gluon Helicity – Transverse Spin – GPDs – Lz

Experimental Access to Helicity Parton Distributions: polarized DIS

Inclusive deep inelastic scattering (DIS) at SLAC, CERN, DESY & JLab $(e, \mu) + (p, d, {}^{3}He) \rightarrow (e, \mu) + X$

Observables: $A_{\parallel}, A_{\perp} \Rightarrow A_1, A_2 \Rightarrow g_1(x, Q^2), g_2(x, Q^2)$

spin dep. cross section asymmetries → spin dep. structure functions

QCD analysis of $g_1(x, Q^2)$ yields quark helicity distributions $\Delta q(x, Q^2)$ and for sufficiently large kinematic coverage in Q^2 scale dependence will yield $\Delta G(x, Q^2)$.

DIS vs nucleon spin structure:

o determine quark and gluon helicity distributions

➔ proton spin decomposition

o test sum rules for structure functions and evolution

Polarized DIS: Kinematic Coverage

Gluon Spin Contribution $\Delta G(x)$ from Scaling Violation of $g_1(x,Q^2)$ in DIS

Helicity Structure -- Experiment

Fixed Target: Higher Twist at low Q²?

Explicit evidence for higher twist contributions for $Q^2 < 1 GeV^2$ Hall A at Jlab, Kramer et al. PRL 95(2005)142002

Polarized DIS at EIC : Kinematic Coverage

EIC: $1 < Q^2 < 2000 \ GeV^2$ for p_p=325 GeV and p_e=30 GeV 0.0001 < x < 0.7

Polarized DIS at EIC : Kinematic Coverage

$$dg_1(Q^2)/dlogQ^2 \rightarrow \Delta G(x,Q^2)$$

Experimental Access to Helicity Parton Distributions: polarized SIDIS

Inclusive deep inelastic scattering (DIS)

$$(e,\mu)+(p,d,^{3}He) \rightarrow (e,\mu)+h+X$$

Observables: A₁^h

spin dep. cross section asymmetries in inclusive hadron production

QCD analysis of $A_1^h(x, Q^2)$ yields quark and anti-quark helicity distributions $\Delta q(x, Q^2)$ and for final states selecting photon-gluon fusion $\Delta G(x, Q^2)$.

SIDIS for nucleon spin structure:

o determine quark and gluon helicity distributions

➔ proton spin decomposition

o test sum rules for structure functions and evolution o test asymptotic behavior of helicity distributions

Polarized SIDIS: Sensitivity to Quark and Sea-Quark Distributions

$$A_1^h(x, Q^2, z) = \frac{\sum_q e_q^2 \Delta q(x, Q^2) D_q^h(z, Q^2)}{\sum_q e_q^2 q(x, Q^2)}$$

 $h = \pi^{+,-}, K^{+,-}, inclusive$ unknown: $\Delta u, \Delta d, \Delta \overline{u}, \Delta \overline{d}, \Delta s$

COMPASS & HERMES proton data

Polarized SIDIS: Sensitivity to Quark and Sea-Quark Distributions

Polarized SIDIS: Strange Sea Polarization vs Kaon FF

⇒ $2\Delta S = \int_0^1 [\Delta s(x) + \Delta \bar{s}(x)] dx$ is negative from $A_1 \rightarrow 2\Delta S = -0.09 \pm 0.01 \pm 0.02$ ⇒ ΔS obtained in SIDIS depends strongly on choice of FFs ⇒ $R_{SF} = D_s^{K^-} / D_{\bar{u}}^{K^-} = D_{\bar{s}}^{K^+} / D_u^{K^+}$ is especially important

Information from e⁺e⁻ on Hadron FFs for Extraction of Quark-Gluon Structure in Inclusive SIDIS (and pp)

e⁺e⁻ information on

charged hadron FF-

little data

at large z

Example: extraction of the quark helicity distributions from the QCD analysis of SIDIS data for A₁ with pions and kaons:

$$A_{l}^{\pi,K} \quad \text{in } l + p \longrightarrow (\pi,K) + X$$

Possible Improvement: Use Precision FF Information from e⁺e⁻ in Belle

Belle: Charged h^{+/-}, pions, kaons,

Systematic uncertainties: z ~0.6: 1% (2%) for π (K); z ~0.9: 14% (50%) for π (K) Preliminary Belle result for negative pions and kaons (Martin Leitgab for Belle at DIS)

√s=10.52 GeV

Pions Kaons

Constraining $\Delta G(x, Q^2)$ in SIDIS/COMPASS through Photon Gluon Fusion

Photon Gluon Fusion: PGF

Experimentally (LO): (a) tag charm (D-Meson) $\Delta G/G = -0.08 \pm 0.21 \pm 0.11$ (b) high p_T hadron pairs $\Delta G/G = 0.125 \pm 0.060 \pm 0.063$

Experimental Access to Helicity Parton Distributions: polarized pp

Inclusive polarized proton-proton scattering (pp) $W \rightarrow l\nu$

 $p + p \rightarrow (h, jet) + X$ and $p + p \longrightarrow l + X$

Observables: $A_{LL}^{h,jet}$ spin dep. cross sec. asymmetries for hadron or jet prod. $A_L^{W \to l \nu}$ single spin asymmetry for cross. sec. in W-prod.

QCD analysis of $A_{LL}^{h,jet}(x,Q^2)$ constrain $\Delta G(x,Q^2)$ and QCD analysis of $A_L^{W \to l\nu}(x,Q^2)$ constrain $\Delta q(x,Q^2)$ and $\Delta \overline{q}(x,Q^2)$.

Probing \Delta G in **Polarized pp Collisions**

Double Spin Asymmetries A_{LL} for Inclusive Jets Observed with STAR

Good discriminative power between calculations with different assumption for ΔG

STAR Preliminary Run6 , \sqrt{s} =200 GeV

∆G: Global QCD Based Fit

<u>DSSV:</u> Daniel de Florian Rodolfo Sassot Marco Stratmann Werner Vogelsang

- Phys. Rev. Lett. 101, 072001(2008)
- First truly global analysis of all available polarized data including RHIC results

Uncertainty estimation: $\Delta \chi^2 = 1$ $\Delta \chi^2 / \chi^2 = 2\%$

TABLE II. First moments $\Delta f_j^{1,[x_{\min} \rightarrow 1]}$ at $Q^2 = 10 \text{ GeV}^2$.

	$x_{\min} = 0 \qquad \qquad x_{\min} = 0.001$		= 0.001
	best fit	$\Delta \chi^2 = 1$	$\Delta \chi^2 / \chi^2 = 2\%$
$\Delta u + \Delta \bar{u}$	0.813	$0.793^{+0.011}_{-0.012}$	$0.793^{+0.028}_{-0.034}$
$\Delta d + \Delta \bar{d}$	-0.458	$-0.416\substack{+0.011\\-0.009}$	$-0.416\substack{+0.035\\-0.025}$
$\Delta \bar{u}$	0.036	$0.028\substack{+0.021\\-0.020}$	$0.028\substack{+0.059\\-0.059}$
$\Delta ar{d}$	-0.115	$-0.089\substack{+0.029\\-0.029}$	$-0.089\substack{+0.090\\-0.080}$
$\Delta \bar{s}$	-0.057	$-0.006^{+0.010}_{-0.012}$	$-0.006^{+0.028}_{-0.021}$
Δg	-0.084	$0.013\substack{+0.106\\-0.120}$	$0.013\substack{+0.702 \\ -0.314}$
ΔΣ	0.242	$0.366^{+0.015}_{-0.018}$	$0.366^{+0.042}_{-0.062}$

Run 9 Jet A_{LL} : STAR Preliminary

Run9:

×3-4 smaller stat. uncertainties than in Run6:

- ✓ Trigger upgrade
- ✓ DAQ upgrade (increased rate, lower E_T threshold)

STAR Run 9 data suggest positive $\Delta G \sim 0.1$. These measurements will be continued in parallel to the W-data taking and the large statistic for the W-sample will lead to a precise measurements of A_{LL} !

August 20 th

Helicity Structure -- Experiment

Extend x-Range \Rightarrow Different \sqrt{s}

Helicity Structure -- Experiment

Probing Low x Through Forward Di-Hadrons

PHENIX Muon Piston Calorimeter

Technology \rightarrow ALICE(PHOS) PbWO₄ avalanche photo diode readout

Acceptance:

 $3.1 < \eta < 3.9, 0 < \varphi < 2\pi$ $-3.7 < \eta < -3.1, 0 < \varphi < 2\pi$

Both detectors were installed for 2008 d-Au run.

August 20 th

Helicity Structure -- Experiment

ΔG at low x

Muon Piston Calorimeter (MPC): PbWO₄ 3.1 < $|\eta|$ < 3.9, 2π azimuth Gives access to lower: x \rightarrow 10⁻³ Fully available from 2008

August 20 th

Summary Helicity Experiment

Much progress still needed:

- gluon distribution, gluon spin contribution
- reliable flavor decomposition of quark spin distribution
- strange polarization
- measure high x-region at large Q²

• only EIC can

- \rightarrow extend kinematics to low x and high Q²
- carry out measurements in current x-range with high statistical precision and at scales that will allow a model independent interpretation of the data

EIC: Helicity Structure, Wish List

$$\frac{1}{2} = L_q + \frac{1}{2}\Delta\Sigma + L_G + \Delta G$$

Goals: (I) Precise measurements of $\Delta\Sigma$ and ΔG and therefore total L_z present $\Delta\Sigma = 0.35 \mp 0.06$ $\Rightarrow \mp 0.02$? present $\Delta G = 0.1 \ 0 \mp 0.1$ + extrapolation uncertainty $\Rightarrow \mp 0.02$?

QCD tests! $\begin{cases} (II) Bjorken sumrule to 2\% (factor 5 better than present) ! \\ (III) g_1 evolution to 2\% \end{cases}$

(IV) Can L_z be directly accessed (in a model independent way)?

Helicity Structure -> Measurements

Inclusive:	g_1 (including evolution) and g_5 for proton and ³ He or d beams
Semi inclusive:	A _{LL} for identified charged pions and kaons
Exclusive:	DVCS
Jets:	A _{LL} for di-jets
Heavy flavor:	A _{LL} for D ⁰

→Full acceptance detector with hadron pID capabilities, heavy flavor tagging, jet reconstruction, excellent momentum resolution, precise relative luminosity monitors and local polarimeters !

Helicity Structure -> Needs & Input

Absolute polarimeter: < 2% (both beams)

Local polarimeters: < 2% (both beams)

Extrapolation uncertainties: < 2%

pQCD framework for PDF extraction: test with cross section
→ normalization (luminosity) to < 2%</p>

Fragmentation functions: need to be know to < 2%

Control of radiative corrections: < 2%

$\Delta G(x)$ at EIC

Generalized Parton Distributions to Access Orbital Angular Momentum ...

GPDs H^u , H^d , E^u , E^d provide access to total quark contribution to proton angular momentum in exclusive processes $I + N \rightarrow I' + N + \gamma$

