TMD Experimental Overview

- Introduction
- Existing and upcoming experiments
- TMDs @ EIC

Ze

• Summary

Du

UNIVERSI

Haiyan Gao

Duke University

POETIC 2012

QCD

- Strong interaction, running coupling ~1
 -- QCD: the theory of strong interaction
 - -- asymptotic freedom (2004 Nobel) perturbation calculation works at high energy
 - -- interaction significant at
 - intermediate energy
 - quark-gluon correlations
 - -- confinement
 - interaction strong at low energy
 - coherent hadron
 - -- Chiral symmetry
 - -- theoretical tools: pQCD, OPE, Lattice QCD, ChPT

Spin as an important knob

Nucleon Structure

- Charge and magnetism (current) distribution
- Spin distribution
- Quark momentum and flavor distribution
- Polarizabilities
- Strangeness content
- Three-dimensional structure
- •

The Incomplete Nucleon: Spin Puzzle

- DIS $\rightarrow \Delta \Sigma \approx 0.25$
- RHIC + DIS $\rightarrow \Delta g$ not small

• \rightarrow L_q Orbital angular momentum of quarks and gluons is important

Understanding of spin-orbit correlations (atomic hydrogen, topological insulator....)

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma(\mu) + L_q(\mu) + J_g(\mu)$ [X. Ji, 1997] Jaffe-Manohar 1990 Chen *et al.* 2008

Wakamatsu 2009,2010

Go beyond collinear to include transverse momentum

Leading-Twist TMD PDFs

M. Schlegel, M. Burkhardt

Leading-Twist TMD PDFs

		Quark polarization		
		Unpolarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)
Nucleon Polarization	U	f_1 •		h_1^{\perp} \uparrow – \downarrow Boer-Mulders
	L		$g_1 \rightarrow - \rightarrow +$ Helicity	h_{1L}^{\perp} \rightarrow - \rightarrow Long-Transversity
	Т	$f_{1T}^{\perp} \stackrel{\bullet}{\bullet} - \stackrel{\bullet}{\bullet}$ Sivers	g_{1T} $\stackrel{\bigstar}{\leftarrow}$ $ \stackrel{\bigstar}{\leftarrow}$ Trans-Helicity	$\begin{array}{c c} h_1 & & & & \\ \hline & & - & & \\ \hline & & \\ Transversity \\ h_{1T}^{\perp} & & & \\ \hline & & - & & \\ \hline & & \\ Pretzelosity \end{array}$

Nucleon structure in 3-D momentum space! Sivers $f_{1T}^{\perp}(x,Q^2,k_T)$ as example @ fixed x, Q²

Unpolarized quark distribution in a proton moving in z dir and polarized in y-direction

Unified View of Nucleon Structure

Access TMDs through Hard Processes

- Partonic scattering amplitude
- Fragmentation amplitude
- Distribution amplitude
- $f_{1T}^{\perp q}(\text{SIDIS}) = -f_{1T}^{\perp q}(\text{DY})$ $h_1^{\perp}(\text{SIDIS}) = -h_1^{\perp}(\text{DY})$

Access Parton Distributions through Semi-Inclusive DIS

 $S_{\rm L}$, $S_{\rm T}$: Target Polarization; λ_e : Beam Polarization

Separation of Collins, Sivers and pretzelocity effects through angular dependence

$$\begin{aligned} A_{UT}(\varphi_h^l,\varphi_S^l) &= \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}} \\ &= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S) \\ &+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S) \\ A_{UT}^{Collins} &\propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp} \\ A_{UT}^{Sivers} &\propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1 \\ A_{UT}^{Pretzelosity} &\propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp} \end{aligned}$$

SIDIS SSAs depend on 4-D variables $(x, Q^2, z \text{ and } P_T)$ Large angular coverage and precision measurement of asymmetries in 4-D phase space is essential.

Transversity $h_{1T} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

- The third PDFs in addition to $f_1 (\bullet)$ and $g_{1L} (\bullet) \bullet$
- Lowest moment gives tensor charge
- $\delta q^{a} = \int (h_{1T}^{a}(x) h_{1T}^{\overline{a}}(x)) dx$
 - Fundamental property, benchmark test of Lattice QCD

A global fit to the HERMES p, COMPASS d and BELLE e+e- data by the Torino group, Anselmino et al., arXiv:0812.4366

> **Solid red line : transversity** distribution, analysis at $Q^2 = 2.4 (GeV/c)^2$

Solid blue line: Soffer bound $|\mathbf{h}_{1T}| \le (\mathbf{f}_1 + \mathbf{g}_{1L})/2$ GRV98LO + GRSV98LO

Wider band: previous extraction PRD 75, 054032 (2007)

Sivers Function f_{1T} $\stackrel{\bullet}{\bullet}$ - $\stackrel{\bullet}{\bullet}$

- Correlation between nucleon spin with quark orbital angular momentum
- Important test for factorization $f_{1T}^{\perp q}\Big|_{SIDIS} = -f_{1T}^{\perp q}\Big|_{D-Y}$
- Different sign with twist-3 quark-gluon corr. dis. at high P_T ?
- T-odd final state interaction -> Target SSA (Brodsky et al., and others)
- Recent developments in the evolution of Sivers function

Kang, Qiu, Vogelsang, Yuan (2011), Kang and Qiu (2012)

Sivers asymmetry - proton

comparison with theory

0.12 most recent predictions from M. Anselmino et al. based on the fit of HERMES proton and COMPASS deuteron data 0.08 $x\Delta^{N} f^{(1)}(x)$ A^p_{Siv} 0.04 0.05 0 -0.04 Q=1 GeV u., COMPASS protons h⁺ -0.05 Anselmino et al, Eur Phys. J A39 (2009) 89 -0.08 A^p_{Siv} COMPASS protons h 10⁻² - Anselmino et al, Eur Phys. J. 10⁻¹ 0.05 A39 (2009) 89 х -0.05 0.12 0.2 1.5 10-2 10-1 p_T^h x z 0.08 Q=1 GeV d_v $x\Delta^{N} f^{(1)}(x)$ June 22, 2010 Anna Martin 0.04 0 **Older fit shows possibly discrepancy?** -0.04 -0.08 10⁻² 10⁻¹ х

Latest extraction based on HERMES p, COMPASS d and p data by M. Anselmino et al., arXiv:1204.1239 taking into account TMD evolution show consistency between the HERMES and COMPASS data

SIVERS FUNCTION - TMD

Pretzlosity:

- Relativistic effect of quark • PRD 78, 114024 (2008)
- (in models) direct measurement of OAM • PRD 58, 096008 (1998) (more previous slide)
- Expect first non-zero Pretzelosity • asymmetries

E06-010: neutron A_{(U/L)T}(π⁺K⁺, π⁻K⁻)

- *First* neutron data in SIDIS SSA&DSA
 - Similar Q² as HERMES experiment
- Disentangle Collins/Sivers effects
- Electron beam: *E* = 5.9 GeV
- High luminosity L ~ 10³⁶ cm⁻²s⁻¹
 - 40 cm transversely polarized ³He target
 - Average beam current 12 uA (max: 15 uA as in proposal)
- BigBite at 30° as electron arm:

P_e = 0.6 ~ 2.5 GeV/c

HRSL at 16° as hadron arm:

- Polarized ³He ran reliably throughout the experiment, and the following three experiments.
- Reached 55%-60% polarization with 15 μA beam and 20 minute spin flip! A NEW RECORD!

Results on Neutron

- Sizable Collins π⁺ asymmetries at x=0.34?
 - Sign of violation of Soffer's inequality?
 - Data are limited by stat.
 Needs more precise data!
- Negative Sivers π⁺ Asymmetry
 - Consistent with HERMES/COMPASS

Double Spin Asymmetry: g_{1T}

- $A_{\mathrm{LT}}^{\cos(\phi_h \phi_s)} \propto g_{1T}^q \otimes D_{1q}^h$
 - Leading twist TMD PDFs
 - T-even, Chiral-even
- Dominated by real part of interference between L=0 (S) and L=1 (P) states

Imaginary part -> Sivers effect

- First TMDs in Pioneer Lattice calculation
 - arXiv:0908.1283 [hep-lat], Europhys.Lett.88:61001,2009
 - arXiv:1011.1213 [hep-lat] , Phys.Rev.D83:094507,2011

Light-Cone CQM by B. Pasquini B.P., Cazzaniga, Boffi, PRD78, 2008 20

Existing A_{LT} **Results** are preliminary

- No measurement until 2002
- Preliminary COMPASS results
 - A_{LT} on proton and deuteron
 - Fixed beam helicity (μ beam)
 - Low x, small predicted asymmetry
- Preliminary HERMES results
 - $-A_{LT}$ on proton
- New measurement needed
 - Different target for flavor decomposition
 - Higher precision at valence region
 - Double spin reversal to cleanly separate A_{LT}

arXiv:1107.4227 [hep-ex]

-0.1

0.1

-0.

New Observable Reveals Interesting Behaviors of Quarks

Quark orbital motions

J. Huang et al., PRL108, 052001 (2012)

12 GeV Scientific Capabilities

Hall D – exploring origin of confinement by studying exotic mesons

The GlueX/Hall D Project

Hall B – understanding nucleon structure via generalized parton distributions and TMDs

Hall C – precision determination of valence quark properties in nucleons and nuclei

Hall A – short range correlations, form factors, hyper-nuclear physics, future new experiments (e.g., PV, MOLLER and SoLID)

SoLID-Spin: SIDIS on ³He/Proton @ 11 GeV

E12-10-006: Single Spin Asymmetry on Transverse ³He @ 90 days, **rating A**

E12-11-007: Single and Double Spin Asymmetry on ³He @ 35 days, **rating A**

E12-11-108: Single and Double Spin Asymmetries on Transverse Proton @120 days, **rating A**

International collaboration with 180 Proposals on PVDIS (A), Collaborators from 8 countries

Key of SoLID-Spin program: Large Acceptance + High Luminosity → 4-D mapping of asymmetries → Tensor charge, TMDs ... →Lattice QCD, QCD Dynamics, Models.

Projected Data (E12-10-006)

• Total 1400 bins in x, Q^2 , P_T and z for 11/8.8 GeV beam.

• z ranges from 0.3 ~ 0.7, only one z and Q² bin of 11/8.8 GeV is shown here. π^+ projections are shown, similar to the π^- .

E12-10-006 Spokespersons: Chen, Gao (contact), Jiang, Qian and Peng

X. Qian et al in PRL 107, 072003

SoLID E12-11-007 Projection for A_{LT} (Partial)

E12-11-007 and E12-10-006: Neutron A_{LT} Projection of one out of 48 Q²-z bins for π⁻

E12-11-007 spokespersons: J.P. Chen, J. Huang, Yi Qiang, W.B. Yan (USTC) E06010 Results, J. Huang et al., PRL108, 052001 (2012)

Assumption: We know the k_T dependence, Q² evolution of TMDs. Also knowledge on TMFF \rightarrow project onto 1-D in x to illustrate the power of SoLID-³He.

Jlab 12 GeV Program has major impact on Tensor Charge

- 2 Anselmino et al., Nucl.Phys.Proc.Suppl. (2009)
- δ u = 0.54^{+0.09}_{-0.22}, δ d = -0.23^{+0.09}_{-0.16}
- 3 Cloet, Bentz and Thomas, Phys.Lett.B (2008) 4 – Wakamatsu, Phys.Lett.B (2007)
- 5 Gockeler et al., Phys.Lett.B (2005)
- 6 He and Ji, Phys. Rev. D (1995)

$$\delta q = \int_{0}^{1} dx (h_{1}^{q}(x) - h_{1}^{\overline{q}}(x))$$

JLab 12 Proton and He³ targets δ u = 0.54^{+0.02}_{-0.02}, δ d = -0.23^{+0.01}_{-0.01}

TMD*a* **EIC:** from valence to the sea

• TMD PDFs: nucleon structure in 3-D momentum space! $f_{1T}^{\perp}(x,Q^2,k_T)$ Sivers as example @ Q²

EIC projection on SSA (illustration)

31

High P_T Physics

- TMD: $\Lambda_{\text{QCD}} \leq P_{\text{T}} \ll Q$
- Twist-3 formulism: $\Lambda_{QCD} \ll P_T$
- Unified picture in $\Lambda_{QCD} \ll P_T \ll Q$

> Ji et al. PRL 97 082002 (2006)

P_T dependence (High P_T) on p of π^+

120 fb⁻¹

Х

Gluon Sivers Distribution

• Focus on charm production back-to-back D Dbar

 $\gamma^* g \to Q\overline{Q}$

Summary

- Frontiers in nucleon structure go beyond collinear, 1-D picture
 - TMDs
 - Three-dimensional description of nucleon in momentum space
 - Transverse motion: spin-orbit correlations, multi-parton correlations, dynamics of confinement and QCD
 - Major advancement has been made both in theory and in experiments first look at TMDs from SIDIS
- JLab 12-GeV upgrade will provide excellent opportunities to map out the 3-dimensional structure of the nucleon through TMDs and GPDs in the valence region
- EIC with flexibility in energy and luminosity will provide precise, quantitative information about quark TMDs in the sea region, and gluon TMDs for the first time

Thanks to E.C. Aschenauer, M. Diehl, M. Huang, B. Pasquini, A. Prokudin, F. Yuan, and others Supported in part by U.S. Department of Energy under contract number DE-FG02-03ER41231