

e-A at Large x

Will Brooks

in collaboration with Jianwei Qiu and Hayk Hakobyan

Institute for Advanced Studies in Science and Engineering Universidad Técnica Federico Santa María

Outline

 Exploring cold nuclear matter using colored partonic probes

- Fragmentation properties, quantum fluctuations

- The intensifying puzzle of heavy quark energy loss
 EIC role is crucial
- Suppression of fragmentation hadrons in nuclei: elusive mechanism or hidden duality?
 Wide kinematic extremes of EIC will clarify this

- Goal: study properties of parton propagation and fragmentation in QCD:
 - Characteristic timescales
 - Partonic energy loss
 - Quantum interference effects
 - Current vs. target fragmentation
 - Partonic vs. hadronic interactions
 - Eventually: hadronization mechanisms

- Goal: study properties of parton propagation and fragmentation in QCD:
 - Characteristic timescales
 - Partonic energy loss
 - Quantum interference effects
 - Current vs. target fragmentation
 - Partonic vs. hadronic interactions
 - Eventually: hadronization mechanisms
- Use nuclei as gluonic spatial analyzers with known properties:
 - sizes, densities, currents and interactions

- Goal: study properties of parton propagation and fragmentation in QCD:
 - Characteristic timescales
 - Partonic energy loss
 - Quantum interference effects
 - Current vs. target fragmentation
 - Partonic vs. hadronic interactions
 - Eventually: hadronization mechanisms
- Use nuclei as gluonic spatial analyzers with known properties:
 - sizes, densities, currents and interactions
- Unique kinematic window at low energies

- Goal: study properties of parton propagation and fragmentation in QCD:
 - Characteristic timescales
 - Partonic energy loss
 - Quantum interference effects
 - Current vs. target fragmentation
 - Partonic vs. hadronic interactions
 - Eventually: hadronization mechanisms
- Use nuclei as gluonic spatial analyzers with known properties:
 - sizes, densities, currents and interactions
- Unique kinematic window at low energies
- Simpler physical picture at high energies

Comparison of Parton Propagation in Three Processes

Accardi, Arleo, Brooks, d'Enterria, Muccifora Riv.Nuovo Cim.032:439-553,2010 [arXiv:0907.3534] Majumder, van Leuween, Prog. Part. Nucl. Phys. A66:41, 2011, arXiv:1002.2206 [hep-ph]

Comparison of Parton Propagation in Three Processes

Accardi, Arleo, Brooks, d'Enterria, Muccifora Riv.Nuovo Cim.032:439-553,2010 [arXiv:0907.3534] Majumder, van Leuween, Prog. Part. Nucl. Phys. A66:41, 2011, arXiv:1002.2206 [hep-ph]

Fundamental ingredients in perturbative picture

Fundamental ingredients in perturbative picture

Exploring cold nuclear matter using colored partonic probes

50

DIS Observables

Transverse momentum broadening:

 $\Delta p_T^2 \equiv \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$

Hadronic multiplicity ratio - defined later

DIS Observables

Transverse momentum broadening:

 $\Delta p_T^2 \equiv \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$

Hadronic multiplicity ratio - defined later

Multi-hadron multiplicity ratios Hadron-photon correlations Bose-Einstein correlations Centrality correlations more....

not in this talk.....

Comparison of p_T broadening data - Drell-Yan and DIS

• New, precision data with identified hadrons!

• CLAS π^+ : 81 four-dimensional bins in Q², v, z_h, and A

Exploring nuclei with partonic probes

• x>0.1

- ensures single quark propagating with initial energy ν
- p_T broadening tags propagation of colored object
 - allows extraction of "production time"/"color neutraliztion time" at low ν
- inference of partonic broadening from hadronic broadening
 - requires factor of z^2
- systematic studies needed to understand properties of the probe, currently ongoing
 - HERMES, JLab6, JLab12 provide the foundation for EIC studies

Deep Inelastic Scattering - Vacuum

- production time τ_p propagating quark
- formation time ${}^{h}\tau_{f}$ dipole grows to hadron
- <u>partonic energy loss</u> dE/dx via gluon radiation in vacuum

Quark k_T broadening vs. hadron p_T broadening

The k_T broadening experienced by a quark is "diluted" in the fragmention process

Verified for pions to 5-10% accuracy for vacuum case, z=0.4-0.7, by monte carlo studies

Basic questions at low energies:

Partonic processes dominate, or hadronic? in which kinematic regime? classical or quantum?

Can identify dominant hadronization mechanisms, uniquely? what are the roles of flavor and mass?

What can we infer about fundamental QCD processes by observing the interaction with the nucleus?

If p_T broadening uniquely signals the partonic stage, can use this as one tool to answer these questions

 $\Delta p_T^2 \propto G(x, Q^2) \rho L$

- In color dipole model and other approaches: $\Delta p_T^2 \propto G(x,Q^2) \rho L$

- In color dipole model and other approaches: $\Delta p_T^2 \propto G(x,Q^2) \rho L$

- In color dipole model and other approaches: $\Delta p_T^2 \propto G(x,Q^2) \rho L$

Universal result in perturbative calculations

- In color dipole model and other approaches: $\Delta p_T^2 \propto G(x,Q^2) \rho L$
- Universal result in perturbative calculations
 - e.g., http://arxiv.org/abs/1208.0751

- In color dipole model and other approaches: $\Delta p_T^2 \propto G(x,Q^2) \rho L$
- Universal result in perturbative calculations
 - e.g., <u>http://arxiv.org/abs/hep-ph/0006326</u>, <u>http://arxiv.org/abs/1208.0751</u>
 - p_T broadening directly samples the gluon field

- In color dipole model and other approaches: $\Delta p_T^2 \propto G(x,Q^2) \rho L$
- Universal result in perturbative calculations
 - e.g., <u>http://arxiv.org/abs/hep-ph/0006326</u>, <u>http://arxiv.org/abs/1208.0751</u>
 - *p*_T broadening <u>directly samples the gluon field</u> is sensitive to (or equal to) the saturation scale

- In color dipole model and other approaches: $\Delta p_T^2 \propto G(x,Q^2) \rho L$
- Universal result in perturbative calculations
 - e.g., <u>http://arxiv.org/abs/hep-ph/0006326</u>, <u>http://arxiv.org/abs/1208.0751</u>
 - p_T broadening <u>directly samples the gluon field</u> is sensitive to (or equal to) the saturation scale

http://arxiv.org/abs/1001.4281

New: dependence of p_T broadening on Feynman x

- Feynman x is the fraction $\pi p_L/max\{\pi p_L\}$ in the γ^* -N CM system
- Separate current ($x_F > 0$) and target ($x_F < 0$) fragmentation
- First observation that p_T broadening originates in both regimes

New: dependence of p_T broadening on Feynman x

- Feynman x is the fraction $\pi p_L/max\{\pi p_L\}$ in the γ^* -N CM system
- Separate current ($x_F > 0$) and target ($x_F < 0$) fragmentation
- First observation that p_T broadening originates in both regimes

$2.0 < Q^2 < 3.0 2.8 < v < 3.4$

No evidence of hadronic broadening - no peak at low energies, and carbon (N=Z) flatter than lead (N>>Z)

Hermes p_T broadening data

World's first comparison between pion and K⁺ p_T broadening

New: dependence of p_T broadening on ϕ_{pq}

curves shown contain terms in $cos(\phi_{pq})$ and $cos(2\phi_{pq})$ for positive pions only statistical uncertainties shown

 Expectation within classical picture: any distribution seen in carbon will become more 'washed out' in heavier nuclei

• Not seen! first observation of quantum effect in p_T broadening

- related to parton density fluctuations in larger nuclei? J. Qiu: Boer-Mulders TMD \otimes $D_j^h(z,Q^2)$ in presence of non-vanishing mass dipole moment

Transverse momentum broadening for pions in Pb vs. ϕ_{pq}

Possible p_T broadening measurement at EIC (~speculative:) Probing quantum density fluctuations at high energies with partonic multiple scattering!

The intensifying puzzle of heavy quark energy loss

20

EIC: study partonic energy loss

- Partonic energy loss is a fundamental process in QCD
- Multiplicity ratio a powerful tool to study it
 - Basic pQCD behavior believed to be ~ understood, **but**....
 - Heavy quark suppression from RHIC and LHC is showing puzzling pattern

Energy Loss in pQCD (BDMPS-Z version)

EIC: study partonic energy loss

- Partonic energy loss is a fundamental process in QCD
- Multiplicity ratio a powerful tool to study it, especially at EIC energies
 - Basic pQCD behavior believed to be ~ understood, **but**....
 - Heavy quark suppression from RHIC and LHC is showing puzzling pattern

Heavy Quark Energy Loss

Heavy quark radiative energy loss is predicted to be less than light quark energy loss:

Ratio of heavy quark energy loss to light quark energy loss

Formalism implies a strict ordering of quark energy loss: Q_H

u/d, s, c, b

 Q_L

B.-W. Zhang et al. / Nuclear Physics A 757 (2005) 493–524

$$\frac{(k_T)}{(k_T)} \approx \exp\left[\frac{16\alpha_{\rm s}C_{\rm F}}{9\sqrt{3}} \cdot L \cdot \left(\frac{\hat{q}M^2}{M^2 + k_{\rm T}^2}\right)^{1/3}\right]$$

http://arxiv.org/abs/0810.5702, http://arxiv.org/abs/0907.1918

R_{AA} for $c \rightarrow e$, $b \rightarrow e$ and π^0

• Bottom contribution is heavily suppressed!

²⁰¹²⁻⁰ See M. Rosati (Tue) and R. Nouicer (Fri) talk

Parton ID: b-quarks

Parallel talk Mihee Jo (Fri) Parallel talk Poster Matt Nguyen (Tue) Jorge Robles

Results: $R_{\rm CP}(N_{\rm part})$ from heavy flavor decays

- \Rightarrow suppression evolves smoothly with centrality.
- \Rightarrow similar $N_{\rm part}$ dependence at all $p_{\rm T}$.

 $\begin{array}{c} \mathsf{ATLAS} \\ \mu\text{-tagged Open} \\ \mathsf{Heavy Flavor} \\ (14/\ 15) \end{array}$

D.V. Perepelitsa

Motivatior

ATLAS Detector

Data selection Centrality μ^{\pm} Reconstruction

HF Extraction

Signal purity Systematic Uncertainty

Results

 $R_{\rm CP}$

Conclusion

ATLAS-CONF-2012-050

Nuclear fragmentation effects do not disappear at high energies! (not at EIC, probably not even at LHeC)

http://arxiv.org/abs/hep-ph/0501260

$$R_{M}^{h} = R_{A}^{h} = \frac{\frac{1}{N_{e}^{A}} N_{h}^{A}}{\frac{1}{N_{e}^{D}} N_{h}^{D}} = -$$

3-dimensional CLAS multiplicity ratios, fully corrected for radiative processes and acceptance, normalized to target thicknesses; C, Fe, Pb (3 of many such plots) also, K⁰, π⁰, π⁻

Access to very strong, unique energy loss signature for charm quarks Substantial suppression for pions, despite high energy! (baryons too)

meson	сτ	mass	flavor content	
π^0	25 nm	0.13	uudd	
π^+ , π^-	7.8 m	0.14	ud, du	
η	170 pm	0.55	uuddss	
ω	23 fm	0.78	uuddss	
η '	0.98 pm	0.96	uuddss	
ϕ	44 fm	1.0	uuddss	
fl	8 fm	1.3	uuddss	
K^0	27 mm	0.50	ds	
K+, K-	3.7 m	0.49	us, us	

meson	сτ	mass	flavor content	baryon	сτ	mass	flavor content
π^0	25 nm	0.13	uudd	p	stable	0.94	ud
π^+ , π^-	7.8 m	0.14	ud, du	\bar{p}	stable	0.94	ud
η	170 pm	0.55	uuddss	Δ	79 mm	1.1	uds
ω	23 fm	0.78	uuddss	A(1520)	13 fm	1.5	uds
η '	0.98 pm	0.96	uuddss	Σ^+	24 mm	1.2	us
ϕ	44 fm	1.0	uuddss	Σ-	44 mm	1.2	ds
f1	8 fm	1.3	uuddss	Σ^0	22 pm	1.2	uds
K^0	27 mm	0.50	ds	Ξ^0	87 mm	1.3	us
K+, K-	3.7 m	0.49	us, us	<u>F</u> -	49 mm	1.3	ds

Actively underway with existing 5 GeV data

meson	сτ	mass	flavor content	baryon	сτ	mass	flavor content
π^0	25 nm	0.13	uudd	p	stable	0.94	ud
π^+,π^-	7.8 m	0.14	ud, du	\bar{p}	stable	0.94	ud
η	170 pm	0.55	uuddss		79 mm	1.1	uds
W	23 fm	0.78	uuddss	A(1520)	13 fm	1.5	uds
η '	0.98 pm	0.96	uuddss	Σ^+	24 mm	1.2	us
ϕ	44 fm	1.0	uuddss	Σ	44 mm	1.2	ds
f1	8 fm	1.3	uuddss	Σ^0	22 pm	1.2	uds
K 0	27 mm	0.50	ds	Ξ^0	87 mm	1.3	us
K+, K-	3.7 m	0.49	us, us	Ξ-	49 mm	1.3	ds

Actively underway with existing 5 GeV data

meson	сτ	mass	flavor content	baryon	сτ	mass	flavor content
π^0	25 nm	0.13	uudd	p	stable	0.94	ud
π^+,π^-	7.8 m	0.14	ud, du	p	stable	0.94	ud
η	170 pm	0.55	uuddss	Λ	79 mm	1.1	uds
W	23 fm	0.78	uudass	A(1520)	13 fm	1.5	uds
η '	0.98 pm	0.96	uuddss	Σ^+	24 mm	1.2	us
ϕ	44 fm	1.0	uuddss	Σ-	44 mm	1.2	ds
fl	8 fm	1.3	uuddss	$\sum 0$	22 pm	1.2	uds
<i>K</i> ⁰	27 mm	0.50	ds	Ξ^0	87 mm	1.3	us
K+, K-	3.7 m	0.49	us, us	Ξ-	49 mm	1.3	ds

Suppression of fragmentation hadrons in nuclei: elusive mechanism or hidden duality?

20

HERMES, JLAB6, JLAB12, p-A, EIC

- Two different explanations for HERMES data, no definitive differentiation yet
- parton energy loss, pre-hadron interaction with medium
- Models based on one view or the other, or a mixture, all describe the data at a similar level of quality
- EIC important to make a clear separation between hadronic and partonic effects

Conclusions

• Exploring cold nuclear matter using colored partonic probes

- much recent progress, foundation for EIC

- The intensifying puzzle of heavy quark energy loss
 EIC role is crucial to clarify this issue, as well as many other mysteries from heavy ion collisions
- Suppression of fragmentation hadrons in nuclei: elusive mechanism or hidden duality?

- Wide kinematic extremes of EIC will clarify this

POETIC 2013

Physics Opportunities at an ElecTron Ion Collider

March 4-8, 2013, Valparaíso, Chile

Scope

The workshop will cover topical issues at the frontiers of hadron structure and explore outstanding questions. The topics discussed will include QCD at high parton densities and small x evolution, the properties of colored probes in cold and hot nuclear matter, helicity distributions, transverse momentum dependent parton distributions (TMDs), generalized parton distributions (GPDs), multiparton correlations, beyond the Standard Model physics, connections to other areas in physics, and novel theoretical developments.

Organizers

Elke-Caroline Aschenauer William Brooks Markus Diehl Max Klein Boris Kopeliovich Ivan Schmidt Anthony Thomas Raju Venugopalan **Previous workshops in this series:** CapeTown, South Africa (February 2012)

Bloomington, USA (August 2012)

Alison Sherman (Conference Secretary)

Location

The Workshop will be held at the picturesque campus of the Technical University Federico Santa María.

The location of the workshop offers its own unique backdrop. The port of Valparaíso, a UNESCO World Heritage City, is famous for its hills, late 19th century architecture, and public elevators that lead to spectacular views of the bay. Neighboring Viña del Mar offers long beaches and beautiful gardens.

Backup slides

Color correlations versus kinematics

Even if hadron forms outside medium, it may form from modified color connection

• <u>Vacuum-like hadronization</u> (q & g contribute to leading hadron)

• <u>Medium-modified hadronization</u> (glue cannot contribute to leading hadron)

- Subleading string hadronizes separately
 -> enhanced soft multiplicity
- Leading string hadronizes vacuum-like but with reduced E_T
- Color connection between medium and probe also relevant for Quarkonium suppression

U.A.Wiedemann talk at QM2012

0.1

String Model production length, Biallas and Gyulassy,

Nucl. Phys. B291 (1987) 793

 $l_p = z \frac{(ln(\frac{1}{z^2}) - 1 + z^2)}{1 - z^2}$

 $z^{2}l_{p} = z^{2} \cdot z \frac{\left(ln\left(\frac{1}{z^{2}}\right) - 1 + z^{2}\right)}{1 - z^{2}}$

Additional z² factor converts quark broadening into hadron broadening expect to see the red curve in data (vs. z)